Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Фазовое пространство системы частиц




 

Микросостояние системы частиц отображается точкой фазового пространства

,

 

где и – обобщенные координата и импульс частицы системы; n – число степеней свободы системы. Число n равно числу проекций координат всех частиц и пропорционально числу частиц. Число проекций импульсов равно числу проекций координат, поэтому число независимых координат фазового пространства равно 2 n. Для каждой системы используется свое фазовое пространство.

Координата частицы газа и ее импульс с течением времени изменяются согласно уравнениям Гамильтона

 

, (2.1а)

 

. (2.1б)

 

Уильям Гамильтон (1805–1865)

 

Гамильтониан – полная энергия системы в виде суммы кинетических и потенциальных энергий всех частиц, выраженная через координаты и импульсы частиц:

.

 

Для нерелятивистской частицы k массой кинетическая энергия

 

.

 

Для консервативной системы полная энергия сохраняется

 

и микросостояния находятся на гиперповерхности фазового пространства.

Уравнения Гамильтона для одномерного движения частицы. Используем гамильтониан

.

 

Из уравнения Гамильтона (2.1а)

с учетом определения скорости

 

получаем известное соотношение между импульсом и скоростью

 

.

Из уравнения Гамильтона (2.1б)

 

находим

 

– второй закон Ньютона. Уравнения Гамильтона являются унифицированной формой записи известных уравнений механики на основе гамильтониана.





Поделиться с друзьями:


Дата добавления: 2015-10-01; Мы поможем в написании ваших работ!; просмотров: 328 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Если вы думаете, что на что-то способны, вы правы; если думаете, что у вас ничего не получится - вы тоже правы. © Генри Форд
==> читать все изречения...

2242 - | 2174 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.01 с.