Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Интеграл от разрывной функции




Пусть функция f (x) непрерывна в интервале [ a,b), но имеет разрыв в точке x = b. В этом случае несобственный интеграл определяется в виде

Аналогично можно рассмотреть случай, когда функция f (x) непрерывна в интервале (a,b ], но имеет разрыв при x = a. Тогда

Если приведенные выше пределы существуют и конечны, то говорят, что соответствующие несобственные интегралы сходятся. В противном случае они считаются расходящимися.

Пусть f (x) непрерывна для всех действительных x в интервале [ a,b ], за исключением некоторой точки . Тогда справедливо соотношение

и говорят, что несобственный интеграл сходится, если оба интеграла в правой части верхнего равенства сходятся. В противном случае несобственный интеграл расходится.

 

 

10. Геометрические приложения определенных интегралов.





Поделиться с друзьями:


Дата добавления: 2015-10-01; Мы поможем в написании ваших работ!; просмотров: 471 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Начинайте делать все, что вы можете сделать – и даже то, о чем можете хотя бы мечтать. В смелости гений, сила и магия. © Иоганн Вольфганг Гете
==> читать все изречения...

2312 - | 2095 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.011 с.