Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Метод непосредственного интегрирования




Определение первообразной и неопределенного интеграла

Функция F (x) называется первообразной функции f (x), если

Множество всех первообразных некоторой функции f (x) называется неопределенным интегралом функции f (x) и обозначается как

Таким образом, если F - некоторая частная первообразная, то справедливо выражение

где С - произвольная постоянная.

Свойства неопределенного интеграла

В приведенных ниже формулах f и g - функции переменной x, F - первообразная функции f,
а, k, C - постоянные величины.

·

·

·

·

Таблица интегралов

В формулах ниже предполагается, что a, p (p ≠ 1), C - действительные постоянные, b - основание показа

тельной функции (b ≠ 1, b > 0).

 

 

2 Методы интегрирования функций

 

Метод непосредственного интегрирования.

Осуществляется с использованием свойств интеграла и сведением интеграла к табличному.

Примеры:

1)
∫(5cos(x)+2−3 x 2+ x 1−4 x 2+1) dx =5∫cos(x) dx +2∫ dx −3∫ x 2 dx +∫ xdx −4∫ dxx 2+1= =5sin(x)+2 xx 3+ln∣ x ∣−4 arctg (x)+ C.





Поделиться с друзьями:


Дата добавления: 2015-10-01; Мы поможем в написании ваших работ!; просмотров: 507 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

В моем словаре нет слова «невозможно». © Наполеон Бонапарт
==> читать все изречения...

2187 - | 2150 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.011 с.