Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Будь-яка впорядкована множина, яка складається з n елементів, називається перестановкою з n елементів і позначається Рn




Таким чином, перестановки з n елементів відрізняються між собою лише порядком елементів.

Два елементи а і b можна упорядкувати двома способами: ab і bа. Це дві перестановки з елементів a і b. Отже, Р2 = 2.

Щоб утворити перестановки з трьох елементів а, b, с можна третій елемент с помістити попереду пари ab, посередині пари аb та вкінці пари ab:

cab, acb, abc.

Точно так із пари можна одержати:

cba, bca, bac.

Отже, для трьох елементів існує 2 · 3 = 6 способів розташу­вання по порядку, число перестановок з трьох елементів дорів­нює 6. P3 = 2 · 3 = 6.

Нехай маємо k елементів, із яких складені всі можливі Рk перестановки. Візьмемо одну із них: а1а2а3...аk. Добавимо ще один (k + 1)-й елемент. Його можна помістити:

1) перед першим елементом а 1;

2) перед другим елементом а2;

3) перед третім елементом a 3;

……………………………………

k) перед k -им елементом а k;

(k + 1) в кінці всіх елементів, тобто, всього k + 1 способом.

Отже, кількість перестановок із k + 1 елементів в (k + 1) раз більша, ніж число перестановок із k елементів, тобто,

.

Отже,

P1 = 1;

P2 = P1 · 2 = 1 · 2 = 2;

P3 = P2 · 3 = 1 · 2 · 3 = 6;

P4 = Рз · 4 = 1 · 2 · 3 · 4 = 24;

P5 = P4 · 5 = 1 ∙ 2 ∙ 3 ∙ 4 ∙ 5 = 120;

………………………………

Pk = Pk-1 · k = 1-2· 3 · ... · k;

Pk+1 = Pk · (k+ 1 ) = 1 · 2 · 3 ·...· k · (k +l).

Добуток натуральних чисел від 1 до даного натурального числа η називається факторіалом числа n і позначається n! В таблиці наведено значення факторіала для значень п від 1 до 10.

Число перестановок з n елементів дорівнює добутку всіх натуральних чисел від 1 до п, тоб­то п! (читають: єн факторіалів).

Задача. Скількома способами можна розставити на майданчику 6 волейболістів?

Розв'язання

P6 = 6! =l · 2 · 3 · 4 · 5 · 6 = 720.





Поделиться с друзьями:


Дата добавления: 2015-10-01; Мы поможем в написании ваших работ!; просмотров: 1109 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Не будет большим злом, если студент впадет в заблуждение; если же ошибаются великие умы, мир дорого оплачивает их ошибки. © Никола Тесла
==> читать все изречения...

2574 - | 2263 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.01 с.