Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Виконання вправ. Множини можуть складатися з будь-яких об'єктів різної при­роди




5 Дано: Μ == { a, b, с, d }, N = { b, d}. Знайдіть:

M\N; б) N\M; в) (Μ \ Ν) U (Ν \ Μ).

 

Множини можуть складатися з будь-яких об'єктів різної при­роди. Для математики особливо важливу роль відіграють мно­жини складені із «математичних об'єктів» — чисел, геометрич­них фігур тощо. Дуже часто зустрічаються числові множини, тобто множини, елементами яких є числа. Згадаємо деякі мно­жини чисел, з якими ви знайомилися в курсі математики.

1 Множина натуральних чисел тобто чисел, які виникають в процесі лічби предметів. Цю множину чисел позначають бук­вою N:

N = {1, 2, 3, 4, 5, 6,...}.

В цій множині завжди можна виконати дії додавання і мно­ження (віднімання і ділення не завжди можна виконати в мно­жині натуральних чисел тобто результат віднімання і ділення двох натуральних чисел не завжди є натуральним числом).

2 Об'єднання натуральних чисел, чисел протилежних до нату­ральних і числа 0 утворює множину цілих чисел, яку позна­чають буквою Z:

Z = {0, ±1, ±2, ±3,...}.

В цій множині завжди можна виконати дії додавання, віднімання та множення. Проте частка двох цілих чисел не завж­ди є числом цілим.

3 Множина раціональних чисел (її позначають буквою Q) це множина чисел, які можна подати у вигляді нескоротного дробу , де т є Ζ, n є N

Q = { х: х = , m Ζ, n Ν}.

Кожне раціональне число можна подати у вигляді нескінчен­ного періодичного дробу. Наприклад = 0,333... = 0,(3). В множині раціональних чисел завжди виконуються дії додавання, віднімання, множення, ділення (крім ділення на 0). Проте, квад­ратний корінь з раціонального числа не завжди є раціональним числом. Наприклад: , і т. д.

4 Числа, які не можна подати у вигляді дробу , де т Z, n Ν (або числа, які подаються у вигляді нескінченного не­періодичного дробу, наприклад π = 3,1415926...), утворюють множину ірраціональних чисел.

Об'єднання раціональних і ірраціональних чисел утворює множину дійсних чисел, яку позначають буквою R.

У множині дійсних чисел завжди можна виконати дії: дода­вання, віднімання, множення, ділення (крім ділення на 0), до­бування квадратного кореня з невід'ємного числа.

На рисунку в вигляді діаграми Ейлера подано співвідношення між числовими множинами:

N Ζ ; Q R





Поделиться с друзьями:


Дата добавления: 2015-10-01; Мы поможем в написании ваших работ!; просмотров: 575 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Если президенты не могут делать этого со своими женами, они делают это со своими странами © Иосиф Бродский
==> читать все изречения...

2486 - | 2349 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.007 с.