Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Принцип работы атомно-силового микроскопа




Атомно-силовая микроскопия - вид зондовой микроскопии, в основе которого лежит силовое взаимодействие атомов. На расстоянии около одного ангстрема между атомами образца и атомом зонда (кантилевера) возникают силы отталкивания, а на больших расстояниях - силы притяжения. Идея устройства очень проста - кантилевер, перемещаясь относительно поверхности и реагируя на силовое взаимодействие, регистрирует ее рельеф.

В сканирующих зондовых микроскопах исследование микрорельефа поверхности и ее локальных свойств проводится с помощью специальным образом приготовленных зондов в виде игл. Рабочая часть таких зондов (острие) имеет размеры порядка десяти нанометров. Характерное расстояние между зондом и поверхностью образцов в зондовых микроскопах по порядку величин составляет 0,1 - 10 нм.

В основе работы зондовых микроскопов лежат различные типы взаимодействия зонда с поверхностью. Так, работа туннельного микроскопа основана на явлении протекания туннельного тока между металлической иглой и проводящим образцом; различные типы силового взаимодействия лежат в основе работы атомно-силового, магнитно­силового и электросилового микроскопов.

В основе работы АСМ лежит силовое взаимодействие между зондом и поверхностью, для регистрации которого используются специальные зондовые датчики, представляющие собой упругую консоль с острым зондом на конце (рис. 14.1). Сила, действующая на зонд со стороны поверхности приводит к изгибу консоли. Регистрируя величину изгиба, можно контролировать силу взаимодействия зонда с поверхностью.

 

Рис. 14.1. Схематическое изображение зондового датчика АСМ [1].

Качественно работу ACMможно пояснить на примере сил Ван-дер- Ваальса. Наиболее часто энергию ван-дер-ваальсова взаимодействия двух атомов, находящихся на расстоянии г друг от друга, аппроксимируют степенной функцией - потенциалом Леннарда-Джонса (рис. 14.2):

 

Первое слагаемое в данном выражении описывает дальнодействующее притяжение, обусловленное, в основном, диполь - дипольным взаимодействием атомов. Второе слагаемое учитывает отталкивание атомов на малых расстояниях. Параметр га - равновесное расстояние между атомами, Uо - значение энергии в минимуме.

Рассмотрим общие черты, присущие различным зондовым микроскопам. Пусть взаимодействие зонда с поверхностью характеризуется некоторым параметром Р. Если существует достаточно резкая и взаимно однозначная зависимость параметра Р от расстояния зонд - образец Р=Р (z), то данный параметр может быть использован для организации системы обратной связи (ОС), контролирующей расстояние между зондом и образцом. На рис. 14.3 схематично показан общий принцип организации обратной связи сканирующего зондового микроскопа.

 

Рис.14.3. Схема организации системы обратной связи зондового микроскопа.

 

Система обратной связи поддерживает значение параметра Р постоянным, равным величине Ро, задаваемой оператором. Если расстояние зонд - поверхность изменяется (например, увеличивается), то происходит изменение (увеличение) параметра Р. В системе ОС формируется разностный сигнал, пропорциональный величине ∆Р = Р - Ро, который усиливается до нужной величины и подается на исполнительный элемент ИЭ. Исполнительный элемент отрабатывает данный разностный сигнал, приближая зонд к поверхности или отодвигая его до тех пор, пока разностный сигнал не станет равным нулю. Таким образом можно поддерживать расстояние зонд-образец с высокой точностью. В существующих зондовых микроскопах точность удержания расстояния зонд-поверхность достигает величины -0.01 А.

При перемещении зонда вдоль поверхности образца происходит изменение параметра взаимодействия P, обусловленное рельефом поверхности. Система ОС отрабатывает эти изменения, так что при перемещении зонда в плоскости X, Y сигнал на исполнительном элементе оказывается пропорциональным рельефу поверхности.

Для получения изображения в ACMосуществляют специальным образом организованный процесс сканирования образца. При сканировании зонд вначале движется над образцом вдоль определенной линии (строчная развертка), при этом величина сигнала на исполнительном элементе, пропорциональная рельефу поверхности, записывается в память компьютера. Затем зонд возвращается в исходную точку и переходит на следующую строку сканирования (кадровая развертка), и процесс повторяется вновь. Записанный таким образом при сканировании сигнал обратной связи обрабатывается компьютером, и затем ACMизображение рельефа поверхности Z= f(x,y)строится с помощью средств компьютерной графики.

Наряду с исследованием рельефа поверхности, зондовые микроскопы позволяют изучать различные свойства поверхности: механические, электрические, магнитные, оптические и многие другие. Для этого используют специальные кантилеверы с магнитными или проводящими покрытиями (Со, TiN, Аu, алмазное покрытие). Применение жидкостной атомно-силовой микроскопии позволяет локально проводить электрохимические реакции, прикладывая потенциал между зондом и проводящей поверхностью, что используется для исследования биологических объектов.

 





Поделиться с друзьями:


Дата добавления: 2018-11-12; Мы поможем в написании ваших работ!; просмотров: 254 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Если вы думаете, что на что-то способны, вы правы; если думаете, что у вас ничего не получится - вы тоже правы. © Генри Форд
==> читать все изречения...

2265 - | 2190 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.011 с.