Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Природа и получение рентгеновых лучей




 

Природа рентгеновских лучей аналогична природе радиоволн, видимого света, инфракрасных, ультрафиолетовых и гамма-лучей. Различие этих видов лучистой энергии состоит только в условиях их получения и в их свойствах.

Рентгеновское излучение – это вид электромагнитных колебаний, возникающих при резком торможении ускоренных электронов в момент их столкновения с атомами вещества анода рентгеновской трубки. Так как рентгеновские лучи возникают при бомбардировке твердой поверхности потоком быстрых электронов, то для их получения необходимо устройство, которое бы обеспечивало получение свободных электронов, ускорение этих электронов, резкое торможение ускоренных электронов препятствием из твердого вещества.

Таким устройством является электронная рентгеновская трубка, которая была предложена в 1913 г. Кулиджем и целиком заменила используемые ранее ионные трубки, в которых электронный поток получали путем бомбардировки «холодного катода» положительными ионами, находящимися в трубке.

Рентгеновский излучатель, или трубка, представляет собой электровакуумный прибор, преобразующий электрическую энергию в энергию рентгеновского излучения. Любая рентгеновская трубка состоит из стеклянного баллона с высокой степенью разряжения (до 7—10 мм рт. ст.), в котором расположены 2 электрода – катод и анод. Катод рентгеновского излучателя представляет собой вольфрамовую спираль линейной формы, накаливающуюся током низкого напряжения. По числу нитей катода все трубки делятся на двухфокусные и однофокусные.

Анод может быть выполнен в виде массивного медного стержня со скошенной рабочей поверхностью, в которую вмонтирована пластина (зеркало) из тугоплавкого металла. Чаще всего это вольфрам, реже тантал или иридий. Данный вид анода называется «неподвижным». Стремление увеличить мощность рентгеновской трубки, сохранив или даже уменьшив величину оптического фокуса, привело к созданию трубок с вращающимся анодом. Анод в этом случае имеет вид вольфрамового диска диаметром 80—100 мм, толщиной 4–5 мм. Катод смещен таким образом, что электронный луч ударяет о скошенный край анодного диска, вращающегося со скоростью 3000–9000 об/мин. Ротор двигателя, вращающего анод, укреплен на подшипниках, впаянных в колбу трубки, а статор расположен вне колбы – в кожухе трубки. В трубках с подвижным анодом электронный луч соприкасается с подвижной поверхностью большой площади. Рентгеновская трубка обязательно заключается в стальной защитный кожух, заполненный минеральным маслом и имеющий выходное отверстие для рабочего пучка, закрытое пластиковой пробкой. По концам кожуха расположены цилиндрические гнезда для подсоединения высоковольтных проводов.

Нить накала катода разогревается и испускает электронное облачко. Ускорение излученных катодом электронов происходит в электрическом поле, образующемся в результате высокого напряжения, созданного между катодом и анодом; в результате электроны устремляются к аноду. Резкое торможение электронов происходит автоматически, так как свободные электроны, испускаемые катодом, после ускорения в электрическом поле попадают на анод трубки. При столкновении электронов с анодом в результате резкого торможения происходит превращение кинетической энергии электронов в тепловую энергию и энергию рентгеновского излучения.

Рентгеновские лучи, излучаемые анодом, имеют сложный спектральный состав, основу которого составляют два компонента:

1) излучение со сплошным спектром, называемое «тормозным излучением»;

2) излучение с линейчатым спектром, называемое «характеристическим излучением».

Интенсивность рентгеновского излучения пропорциональна силе тока, квадрату напряжения на трубке и атомному номеру вещества анода. Меняя накал анода, можно регулировать интенсивность рентгеновского излучения.

Применение рентгеновских лучей в медицине для диагностики и лечения основано на их способностях:

1) проникать через вещества, не пропускающие видимого света;

2) вызывать свечение некоторых химических веществ (флюоресценцию);

3) оказывать фотохимическое действие – разлагать галоидные соединения серебра (вызывать почернение серебра);

4) вызывать физиологические или патологические изменения (в зависимости от дозы) в облученных органах и тканях, т. е. оказывать биологическое действие, на котором основано их лечебное применение;

5) передавать энергию окружающей среде, вызывая ионизацию.

 





Поделиться с друзьями:


Дата добавления: 2018-11-10; Мы поможем в написании ваших работ!; просмотров: 277 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Сложнее всего начать действовать, все остальное зависит только от упорства. © Амелия Эрхарт
==> читать все изречения...

2221 - | 2092 -


© 2015-2025 lektsii.org - Контакты - Последнее добавление

Ген: 0.01 с.