Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Каким образом производить или производственная функция и анализ затрат




2.2.1. Производственная функция: понятие, свойства

Производственная функция характеризует зависимость между количеством используемых ресурсов (факторов производства) и максимально возможным объемом выпуска, который может быть достигнут при условии, что все имеющиеся ресурсы используются полностью и эффективно.

Свойства производственной функции:

1. существует предел увеличения производства, который может быть достигнут при увеличении одного ресурса и постоянстве прочих ресурсов. Если, например, в сельском хозяйстве увеличивать количество труда при постоянных количествах капитала и земли, то рано или поздно наступает момент, когда выпуск перестает расти;

2. ресурсы дополняют друг друга, но в определенных пределах возможна и их взаимозаменяемость без сокращения выпуска. Ручной труд, например, может заменяться использованием большего количества машин, и наоборот;

3. чем длиннее временной период, тем большее количество ресурсов может быть пересмотрено. В этой связи различают мгновенный, краткосрочный и долгосрочный периоды.

Мгновенный период - период, когда все ресурсы являются фиксированными.

Краткосрочный период - период, когда, по крайней мере, один ресурс является фиксированным.

Долгосрочный период - период, когда все ресурсы являются переменными.

Общий вид производственной функции:

Q = f (KL),

где

· Q – заданный объем выпуска;

· L – количество используемого труда;

· K – количество используемого капитала;

· f – функциональная зависимость заданного объема выпуска от количества ресурса. 

Графиком производственной функции является изокванта.

Изокванта (греч. «изо» - одинаковый, лат. «кванто» – количество) – это линия (постоянного выпуска), которая отражает все комбинации двух факторов производства (труда и капитала), при которых выпуск остается неизменным. (рис. 3.1).

Рис. 1.13. Изокванта.

Свойства изокванты:

1. Изокванта показывает минимальное количество ресурсов вовлекаемых в процесс производства.

2. Все комбинации ресурсов на отрезке АВ отражают технологически эффективные способы производства заданного объема продукции.

3. Изокванта всегда вогнута (имеет отрицательный наклон) степень вогнутости зависит предельной нормы технологической замены, т.е. от соотношения предельной производительности труда и капитала. При движении сверху – вниз вдоль изокванты предельная норма технологической замены все время убывает, о чем говорит уменьшающийся наклон изокванты.

Предельная норма технологической замены одного ресурса другим – есть количество другого ресурса, которым может быть заменен данный ресурс для получения одного и того же объема выпуска:

,

где

o MRTSLK - предельная норма технологической замены труда капиталом;

o MPL – предельная производительность труда;

o MPK – предельная производительность капитала;

o ∆L – приращение труда;

o ∆K – приращение капитала.

Если мы будем сокращать прирост капитала на величину ∆K, то данное сокращение снизит объем продукции на соответствующую величину (– ∆K × МРК).

Если мы будем привлекать единицу рабочей силы, то данное приращение труда увеличит объем продукции на величину (∆L × МРL).

Следовательно, для данного объема продукции верно равенство:

MRTSLK = MPL × ∆ L = MPK × ∆ K

Обосновать это равенство можно так. Пусть предельный продукт труда составляет 10, а предельный продукт капитала равен 5. Это означает, что, нанимая еще одного работника, фирма увеличивает выпуск на 10 единиц, а, отказываясь от одной единицы капитала, она теряет 5 единиц продукции. Следовательно, чтобы оставить выпуск прежним, фирма может заменить две единицы капитала одним работником.

При бесконечно малых изменениях L и K она предельная норма технологической замены есть производная функции изокванты в данной точке:

Геометрически она представляет собой наклон изокванты (рис. 1.14):

Рис. 1.14. Предельная норма технологической замены

Различают два способа производства заданного объема продукции: технологически эффективный и экономически эффективный.

Технологически эффективный способ производства - производство заданного объема продукции с наименьшим количеством труда и капитала.

Экономически эффективный способ производства -производство заданного объема продукции с наименьшими затратами.

Рис 1.15. Технологически эффективное и неэффективное производство

o способ производства А – технологически эффективный в сравнении со способом В, т.к. он требует использования хотя бы одного ресурса в меньшем количестве.

o способ производства В технологически неэффективный в сравнении с А (отрезок, выделенный пунктиром, отражает все технологически неэффективные способы производства).

Технологически неэффективные способы производства не используются рациональными предпринимателями и не относятся к производственной функции. Следовательно, изокванта не может иметь положительный наклон (рис. 1.16):

Карта изоквант - cовокупностьизоквант (рис.1.16).

Рис. 1.16. Карта изоквант.

o q1; q2 – изокванты на карте изоквант;

o изокванта, расположенная правее и выше предыдущей (q2) соответствует большему объему выпуска.





Поделиться с друзьями:


Дата добавления: 2018-10-14; Мы поможем в написании ваших работ!; просмотров: 371 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Чтобы получился студенческий борщ, его нужно варить также как и домашний, только без мяса и развести водой 1:10 © Неизвестно
==> читать все изречения...

2470 - | 2349 -


© 2015-2025 lektsii.org - Контакты - Последнее добавление

Ген: 0.011 с.