Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Метод основывается на приведении исходного уравнения к форме




.

Это преобразованиеможет быть выполнено многими способами. Например, уравнение

может быть преобразовано как

 или .

Далее процесс уточнения корня строится по итерационной схеме

…………

……………

где x 0 – начальное приближенное значение корня на отрезке [ a, b ].

Если последовательностьзначений x k (k = 0, 1, 2,...) имеет конечный предел, то итерационный процесс сходится к точному значению корня x тза бесконечно большое число шагов. Абсолютная и относительная погрешности найденного значения корня на k -ом шаге (xk) могут быть получены из выражений

,     ,

где

, , .

Первое из этих выражений может иметь другие формы записи

, .

Приведённые формулы для вычисления погрешностей требуют решения дополнительной задачи поиска максимума модуля первой производной функции φ (x) на отрезке локализации корня [ a, b ]. Поэтому на практике итерации завершают при выполнении одного из условий:

или ,

где δ абс и δ отн – задаваемые абсолютная и относительная разницы между соседними значениями приближения корня, соответственно. В этом случае надо помнить, что истинная погрешность определения корня может заметно отличаться от δ абс или δ отн. Поэтому после завершения поиска корня необходимо вычислить истинное значение погрешности решения по приведённым формулам для ε абс или ε отн.

Может случиться так, что последовательность приближённых значений x k (k = 0, 1, 2,...) корня x т не имеет предела. В этом случае метод расходится, и описанная итерационная схема не может быть применена для решения уравнения. Анализ выражения для ε абс позволяет сформулировать условие сходимости итераций. Очевидно, для того, чтобы погрешность ε абс при стремлении k к бесконечности стремилась к нулю и итерации сходились к точному решению, надо обеспечить выполнение следующего неравенства

,

которое на практике обычно заменяется на упрощённое

.

Рис.2.                                                 Рис.3.

Процесс уточнения корня уравнения методом простых итераций может быть проиллюстрирован графически.

Как видно на рис.2, для выбранной на отрезке [ a, b ] начальной точки x 0 вычисляется значение функции j (x 0). Абсцисса этой точки с помощью графика функции y = x преобразуетсявновое приближение переменной x 1. Далее процесс повторяется, и находятся значения x 2, x 3,..., x k,... до тех пор, пока не будет выполнено условие завершения итерационного процесса. В данном случае итерационный процесс сходится. На рис.3 показана ситуация, когда метод итераций расходится. Каждое новое значение x k отстоит всё дальше от точного решения уравнения x ти заданная погрешность вычисления недостижима. Такая ситуация характерна для неудачного преобразования уравнения f (x) = 0 к уравнению x = j (x).

Исходя из этого, можно указать способ преобразования исходного уравнения f (x) = 0 к форме, обеспечивающей сходимость итераций. Он основан на том, что исходное уравнениеравносильно уравнению x = x + λ f (x), где λ – отличная от нуля произвольная постоянная, которая выбирается из приближённого условия сходимости итераций , считая j (x) = x + λ f (x).

Рассмотрим работу метода на примере поиска приближённого значения корня уравнения

x 3 7.3 x 2 + 16.8 x – 12.2 = 0,

лежащего на отрезке [1, 2] и оценки погрешности его определения.

На первом этапе необходимо построить график левой части уравнения, для чего вычисляются её значения в трёх базовых точках

f (1.0) = 1.03 – 7.3·1.02 + 16.8·1.0 – 12.2 = – 1.70,

f (1.5) = 1.53 – 7.3·1.52 + 16.8·1.5 – 12.2 = – 0.05,

f (2.0) = 2.03 – 7.3·2.02 + 16.8·2.0 – 12.2 = 0.20.

Как видно из рис.4, в качестве начального приближения корня рассматриваемого уравнения следует взять x 0= 1.5. Следуя алгоритму метода итераций, требуется преобразовать исходное уравнение к виду

x = x + λ (x 3 7.3 x 2 + 16.8 x – 12.2),

где

φ (x) = x + λ (x 3 7.3 x 2 + 16.8 x –12.2),

а

= 1+ λ (3 x 2 14.6 x + 16.8),

и найти значение множителя λ. Для этого можно воспользоваться условием сходимости метода

.

Отсюда                          –1 < 1 + 1.65 λ < 1,

–2 < 1.65 λ < 0,

–1.212 < λ < 0,

что позволяет выбрать λ = –0.6.

С использованием в качестве начального значения x 0 = 1.5 выполняется первая итерация

x 1 = 1.5– 0.6(1.53–7.3·1.52 + 16.8·1.5 12.2) = 1.53.

Выполнение второй итерации даёт следующий результат

x 2 = 1.53– 0.6(1.533–7.3·1.532 + 16.8·1.53 12.2) = 1.5318,

а третья и четвёртая итерации соответственно дают

x 3 = 1.5320, x 4 = 1.53202.





Поделиться с друзьями:


Дата добавления: 2018-10-14; Мы поможем в написании ваших работ!; просмотров: 462 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Бутерброд по-студенчески - кусок черного хлеба, а на него кусок белого. © Неизвестно
==> читать все изречения...

2456 - | 2381 -


© 2015-2025 lektsii.org - Контакты - Последнее добавление

Ген: 0.007 с.