Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Lt; y 1, y 2 > Ï A × B ® y 1 Ï A Ú y 2 Ï B.




Например, заданы множества А = { a, b }, B = { c, d, e }. Тогда декартово произведение этих множеств равно A × B = {<a, c>, <a, d>, <a, e>, <b, c>, <b, d>, <b, e>}.

Кортеж длины 2 <a, b> можно изобразить на координатной плоскости точкой, абсциссой которой является 1-й элемент кортежа, а ординатой — 2-й элемент кортежа.

Например, заданы множества A = {2, 3}, B = {1, 4}. Тогда A × B = {<2, 1>, <2, 4>, <3, 1>, <3, 4> }, B × A = {<1, 2>, <1, 3>, <4, 2>, <4, 3>} (рис. 3.1).

Рис. 3.1. Пример декартова произведения двух множеств (B ´ A – точки ¨; A ´ B – точки ■)

Аналогичным образом определяется декартово произведение трех, четырех и более множеств.

Декартовым произведением трех множеств А, В, С называется множество, состоящее из всех тех кортежей длины 3, 1-й элемент которых принадлежит множеству А, 2-й — множеству В, 3-й — множеству С. Например, если, A = {2, 3}, B = {a, b}, С = { x, y }. Тогда A × B × C = {<2, a, x >, <2, a, y >, <2, b, x >, <2, b, y >, <3, a, x >, <3, a, y >, <3, b, x >, <3, b, y >}.

Из определения декартова произведения следует, что А × В равно Æ, если А = Æ или В = Æ:

А × В = Æ ® А = Æ Ú В = Æ.

По аналогии можно утверждать, что произведение нескольких множеств равно пустому множеству тогда и только тогда, когда хотя бы одно из этих множеств пусто:

А1 × А2 × А3 ×... × Аn = Æ ® А1 = Æ Ú А2 = Æ Ú А3 = Æ Ú … Ú А n = Æ.

Исходя из свойств кортежа, справедливо следующее: А × В ¹ В × А.

Операцию декартова произведения используют для определения степеней множества.

Пусть М — произвольное множество. Назовем S-той степенью множества М и обозначим МS прямое декартово произведение S - одинаковых множеств, равных М. Для S = 2, 3, 4...

MS = M × M × M ×... × M

     S – раз

По определению считают, что M1 = M, M0 = < >. При S ³ 2 множество МS является множеством всех кортежей длины S над множеством М.

Если М содержит n элементов и S ³ 2, то число элементов множества МS равно n S, где n – число элементов множества М. Например, М = {a, b}, M0 = < >, M1 = M, М2 = {<a, a>, <a, a>, <b, a>, <b, b>}, M3 = {<a, a, a>, <a, a, b>, <a, b, a>, <a, b, b>, <b, a, a>, <b, a, b>, <b, b, a>, <b, b, b>}.

Декартово произведение двух множеств обладает следующими свойствами:

· X × Y ¹ Y × X                                           - некоммутативность;

· X × (Y × Z) = (X × Y) × Z = X × Y × Z   - ассоциативность;

· - дистрибутивность по объединению;

· - дистрибутивность по пересечению;

·     - дистрибутивность по разности;

· (X × Y) Ç (W × Z) = (X Ç W) × (Y Ç Z).

Некоторые из перечисленных свойств следуют из определения декартова произведения. Для доказательства других свойств необходимо использовать методы доказательств тождеств с множествами.

3.3. Операция проектирования множеств

Введем еще одну операцию — операцию проектирования.

Операция проектирования унарна. Она применима не к двум множествам, а к одному множеству. Кроме этого, операция проектирования применима только к множеству кортежей одинаковой длины. Проекция множеств определяется через проекцию кортежей.

Определим понятие проекции кортежей.

Пусть задан кортеж a = < a 1, a 2,..., a s > длины s, s > 0.

1) Пусть 1 £ i £ s. Тогда проекцией кортежа a на i -тую ось называется i -тая компонента кортежа a.

2) Пусть задано произвольное число q, такое, что 2 £ q £ s. И пусть задано число осей 1 £ i 1 £ i 2 £... £ i q £ s. Тогда проекцией кортежа a на оси с номерами i 1, i 2,..., i q называется кортеж < a i 1, a i 2,..., a i q >, который обозначается следующим образом: пр i 1, i 2,..., i q a = < a i 1, a i 2,..., a i q >.

3) Проекцией кортежа a на пустое множество осей называется пустой кортеж. Аналогично проекцией пустого кортежа на пустое множество осей называется пустой кортеж.

Например, задан кортеж a = < 12, 15, 6, 7, 8 >, пр i 1 a = < 12 >, пр i 2 a = < 15 >, пр i 3 a = < 6 >, пр i 4 a = < 7 >, пр i 5 a = < 8 >, пр i 1, i 2 a = < 12, 15 >, пр i 1, i 5 a = < 12, 8 >, пр i 6, i 8 a = < >.

Определим понятие проекции множества. Как отмечено это понятие будет определено только для случая, когда проектируемое множество состоит из кортежей, причем все кортежи имеют одинаковую длину.

Проекция множества М — это множество проекций кортежей из М.

Пусть задано множество кортежей М длины s, s > 0.

1) Пусть 1 £ i £ s, тогда проекцией множества М на i -тую ось называется множество проекций кортежей из М на i -тую ось и обозначается: пр i М.

2) Пусть задано произвольное число q, такое, что 2 £ q £ s, и задано число осей 1 £ i 1 £ i 2 £... £ i q £ s. Тогда проекцией множества М на оси с номерами i 1, i 2,..., i q называется множество проекций кортежей из М на оси с номерами i 1, i 2,..., i q.

3) Проекцией множества М на пустое множество осей называется множество проекций кортежей из М на пустое множество: прÆМ.

Рассмотрим пример. Пусть М = { < 1, 2, 3, 4, 5 >, < 2, 1, 3, 5, 5 >, < 3, 3, 3, 3, 3 >, < 3, 2, 3, 4, 3 >, < a, b, a, 1, a > }. Тогда пр2М = { 2, 1, 3, 2, b }, пр2,4М =    { < 2, 4>, < 1, 5>, < 3, 3>, < 2, 4>, < b, a> }, пр6,7М = Æ.

Пусть М — произвольное множество, длина которого s, s ³ 2. Тогда множество Мs состоит из кортежей длины s и значит, его можно проектировать. Операция проектирования множества основана на описанных правилах построения проекций кортежей и множеств. Для любого натурального числа i, 1 £ i £ s проекция пр i Ms = M

Согласно определению операции проектирования, можно сказать, что для произвольного кортежа <x, y>истинны следующие высказывания:

< x, y > Î A ® x Î пр 1 A & y Î пр 2 А,





Поделиться с друзьями:


Дата добавления: 2018-10-18; Мы поможем в написании ваших работ!; просмотров: 193 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

80% успеха - это появиться в нужном месте в нужное время. © Вуди Аллен
==> читать все изречения...

2714 - | 2615 -


© 2015-2025 lektsii.org - Контакты - Последнее добавление

Ген: 0.01 с.