Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Матрица переходных вероятностей




zk

Zk

  z1 z2 ... zk
z1 p11 p12 ... p1k
z2 p21 p22 ... p2k
... ... ... ... ...
zk pk1 pk2 ... pkk

Таблица переходов обычно задается матрицей k*k:

Р p =

p11 p12 ... p1k
p21 p22 ... p2k
... ... ... ...
pk1 pk2 ... pkk

Обычно считают, что до начала работы автомат находится в начальном состоянии z0 и задается начальное распределение вероятностей вида

 

z z1 z2 ... zk

,

d d1 D2 ... dk

которое описывает вероятность перехода системы из начального состояния z0 в состояние zk. Таким образом, в нулевой такт времени состояние автомата меняется в соответствии с распределением d, а дальнейшая работа автомата описывается матрицей Рp. Информация о начальном состоянии обычно вводится нулевой строкой в матрицу переходов с добавлением первого столбца с нулевыми элементами.

Р -автомат может быть задан в виде ориентированного графа. Вершины – состояния автомата, ребра – переходы из одного состояния в другое. Дуги имеют веса равные вероятности этих переходов. Около вершин записываются выходные сигналы, соответствующие этим состояниям.

Пример. Пусть автомат задан таблицей переходов:

 

  0 0,5 0 0 0,5 z0   z z1 z2 z3 z4 z0
  0 0 0 1,0 0 z1   y 0 1 1 0 0
Pp= 0 0 0,75 0 0,25 z2

  0 0 0,4 0 0,6 z3

  0 1,0 0 0 0 z4

Требуется оценить суммарные финальные вероятности пребывания этого автомата в состоянии z2, z3,... Для этого используется аналитическая модель, основанная на аппарате Марковских цепей. Получают систему уравнений для определения финальных вероятностей. Начальное состояние z0 можно не учитывать, так как оно не оказывает влияние на значения финальных вероятностей.

  0 0 1 0
  0 0,75 0 0,25
 = *= 0 0,4 0 0,6
  1 0 0 0

C = (C1, C2, C3, C4) – финальная вероятность пребывания Р -автомата в состоянии zk

C1 + C2 + C3 + C4 = 1 –условие нормировки

C1 = C4;              C2 = 0,75C2 + 0,4C3, C4 = 0,25C2 + 0,6C3

C3 = C1;             C1 = 5/23; C2 = 8/23; C3= C4= 5/23

При бесконечной работе у-детерминированного Р -автомата на его выходе формируется двоичная последовательность с вероятностью появления единицы С23=0,5652.

Таким образом, основой описания Р -автомата является аппарат дискретных Марконовских цепей с конечным множеством состояний. Характеристики системы определяются на основании расчетов.

Р -автоматы используются как генераторы Марконовских последовательностей, которые описывают функционирование системы S или воздействия внешней среды.

Кроме аналитических моделей для Р -схем используются имитационные модели, реализуемые, например, методом статистического моделирования.

 





Поделиться с друзьями:


Дата добавления: 2018-10-15; Мы поможем в написании ваших работ!; просмотров: 496 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Своим успехом я обязана тому, что никогда не оправдывалась и не принимала оправданий от других. © Флоренс Найтингейл
==> читать все изречения...

2395 - | 2202 -


© 2015-2025 lektsii.org - Контакты - Последнее добавление

Ген: 0.008 с.