Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Коллигативные свойства растворов электролитов




 

Растворы электролитов обнаруживают значительные отклонения от законов для идеальных растворов, касающиеся давления насыщенного пара, понижения температуры замерзания и повышения температуры кипения. Причём эти отклонения бывают намного выше, чем у растворов неэлектролитов с такой же молярной или моляльной концентрацией. Причиной этого является то, что в растворах электролитов молекулы частично или полностью ионизированы, и, следовательно, частиц, определяющих коллигативные свойства, в них больше, чем в растворах неэлектролитов. Например, для 0,01М раствора NaCl наблюдаемые осмотическое давление и понижение температуры замерзания в 2 раза больше, чем для раствора сахарозы с такой же концентрацией, поскольку каждая молекула хлорида натрия диссоциирует на два иона.

В случае не полностью диссоциированных электролитов зависимость между изменением коллигативных свойств и числом ионов, образующихся при ионизации одной молекулы, сложнее, однако она существует и выражается с помощью так называемого изотонического коэффициента Вант-Гоффа.

Изотонический коэффициент   i вводится в уравнения, описывающие коллигативные свойства растворов электролитов:

p = iCRT,

D T зам = i Ккр m,

D Ткип = i Кэ m.

Его значение всегда больше 1. Физический смысл изотонического коэффициента выражается следующим соотношением:

истинное число частиц растворённого вещества

i = ¾¾¾¾¾¾¾¾¾¾¾¾¾¾¾¾¾¾¾¾¾¾¾¾¾¾¾

число частиц растворённого вещества до диссоциации


 

Если раствор содержит n молекул слабого электролита и если a - степень диссоциации, то число недиссоциированных молекул будет равно n (1 - a), а число ионов в растворе при равновесии - n n a, где n - число ионов, образующихся при диссоциации одной молекулы. С учётом этого выражение для коэффициента Вант-Гоффа можно записать в следующем виде:

n (1 - a) + n n a

i = ¾¾¾¾¾¾¾¾ = 1 - a + n a

n


или

i = 1 + a (n - 1).                                  (9.1)

Таким образом, зная степень диссоциации электролита, можно вычислить его изотонический коэффициент, а с помощью изотонического коэффициента можно рассчитывать коллигативные свойства и предсказывать поведение растворов слабых электролитов.

Уравнение (9.1) после преобразования к виду

i - 1

a = ¾¾¾

n - 1


может лечь в основу независимого метода определения степени диссоциации электролитов. Экспериментально измеряя осмотическое давление, депрессию замерзания или повышение температуры кипения раствора исследуемого электролита и раствора неэлектролита с одинаковыми концентрациями, можно вычислить изотонический коэффициент, используя отношения:

p эл   D T зам эл   D T кип эл

i = ¾¾ = ¾¾¾¾ = ¾¾¾¾.

p неэл D T зам неэл D T кип неэл


А зная i, можно по уравнению (9.1) вычислить степень диссоциации электролита. Так, для бинарного слабого электролита (молекулы которого распадаются на 2 иона) в разбавленном растворе a = i - 1.

В случае полностью диссоциированных (“сильных”) электролитов при высоких концентрациях в растворе происходят явления ассоциации, приводящие к образованию ионных пар, тройников, кластеров и т. д. В результате этого осмотическое давление в таких растворах меньше, чем рассчитанное по модифицированному уравнению Вант-Гоффа, включающему в себя изотонический коэффициент. Для описания осмотических свойств таких растворов в химии, а также в фармации применяется осмотический коэффициент ¦, равный отношению экспериментального найденного осмотического давления к тому давлению, которое имело бы место при отсутствии ассоциации и других взаимодействий в растворе:

p эксп

¦ = ¾¾¾¾.

  n p теор


Отсюда можно найти соотношение между осмотическим и изотоническим коэффициентами:

   i

¦ = ¾.

  n


 

9.4. Буферные растворы. Буферная ёмкость

 

Буферные растворы широко используются в химии для создания и поддержания требуемого значения рН.

Буферными называются растворы, содержащие протолитическую систему, обладающие определённым рН и способные поддерживать его практически постоянным при введении в раствор сильной кислоты или сильного основания. Эта способность, называемая буферным действием, проявляется в зависимости от состава раствора. В качестве компонентов протолитической системы выступают донор протонов - слабая кислота и акцептор протонов – сопряжённое основание. Величина, характеризующая способность буферного раствора сопротивляться действию кислоты или основания, называется буферной ёмкостью и обозначается b. Она измеряется количеством сильного основания или кислоты, которые необходимо добавить к 1 литру буферного раствора, чтобы изменить его рН на единицу.

Изменение рН зависит не от абсолютного количества добавленной сильной кислоты (или сильного основания), а от соотношения их числа молей и числа молей слабого основания (или слабой кислоты) в буферном растворе. Следовательно, буферной ёмкостью называется количество молярных масс эквивалента сильной кислоты (или сильного основания), которое надо добавить к 1 литру буферного раствора, чтобы изменить его рН на единицу. Вычислить значение b по экспериментальным данным можно по формуле

NV х             1000 NV х  

b = ¾¾¾ [моль/л] = ¾¾¾¾ [ммоль/л],

  Va                    Va


где V х - объём раствора сильной кислоты (сильного основания) с молярной концентрацией эквивалента N, Va - объём буферного раствора, взятый для определения.

    Буферная ёмкость одного и того же раствора по отношению к сильной кислоте и к сильному основанию, как правило, различна, что зависит от соотношения компонентов буферного раствора:

     СНАСА-

b = 2,303 ¾¾¾¾,

  СНА + СА-


где СНА и СА- - концентрации соответственно слабой кислоты и её аниона (сопряжённого основания) в буферном растворе.

Так как в процессе метаболизма в организме постоянно образуются продукты кислотного характера (например, HCl в желудочном соке), необходим механизм поддержания постоянного значения рН. Сохранение постоянства реакции среды биологических жидкостей обеспечивается наличием буферных систем, обладающих значительной буферной ёмкостью. В организме человека особенно большую роль играют белковая, бикарбонатная и фосфатная буферные системы крови. Примерно 75 % всей буферной ёмкости крови обеспечивается гемоглобин-оксигемоглобиновой буферной системой. Благодаря этим системам рН крови поддерживается на уровне 7,36 ¸ 7,40, рН желудочного сока - около 2 и т. д. Буферные свойства клеточных и межклеточных сред приводят к быстрой нейтрализации попавших на кожу небольших количеств кислоты или щелочи.

Нарушение рН внутренних сред организма, сопровождающееся ацидозом («закислением») или алкалозом («защелачиванием»), может привести к тяжёлым заболеваниям и даже к смерти.

Другие свойства буферных растворов и вообще растворов электролитов, а также теории, описывающие их строение, в данном курсе не излагаются, так как входят в программы курсов общей и аналитической химии.





Поделиться с друзьями:


Дата добавления: 2018-10-15; Мы поможем в написании ваших работ!; просмотров: 239 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Логика может привести Вас от пункта А к пункту Б, а воображение — куда угодно © Альберт Эйнштейн
==> читать все изречения...

2282 - | 2210 -


© 2015-2025 lektsii.org - Контакты - Последнее добавление

Ген: 0.007 с.