Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Физические приложения производной




1. Если материальная точка M движется неравномерно по пути, заданному функцией , то мгновенная скорость движения в момент времени есть производная от пути S по времени t:

(11)

2. Если функцией описывается процесс изменения скорости неравномерного движения в зависимости от времени, то мгновенное ускорение материальной точки в момент времени есть производная от скорости по времени t:

(12)

 

3. Если – функция, описывающая процесс изменения количества теплоты, сообщаемой телу при нагревании его до температуры T, то теплоёмкость тела есть производная от количества теплоты Q по температуре T:

4. Линейная плотность неоднородного тонкого стержня в точке есть производная от массы m по длине l:

5. Мгновенное значение электродвижущей силы индукции равно скорости изменения магнитного потока, т.е. производной от магнитного потока по времени

6. Сила тока в колебательном контуре в момент времени равна производной заряда по времени :

 

Пример 1. Написать уравнение касательной и нормали, проведённой к графику функции в точке с абсциссой x = 2.

Решение. Для нахождения уравнения касательной воспользуемся формулой (9). Сначала найдём ординату точки касания . Для этого значение подставим в уравнение функции:

Для нахождения углового коэффициента найдём производную , используя формулу дифференцирования дроби:

Найдём значение производной при :

Подставляем найденные значения в формулу (9), получаем уравнение касательной:

, т.е.

Чтобы написать уравнение нормали, воспользуемся формулой (10):

Получим, что уравнение нормали, проведенной к заданной кривой в заданной точке имеет вид

Пример 2. Определить, в какой точке кривой касательная наклонена к оси абсцисс под углом 45°.

Решение. Так как тангенс угла наклона касательной к оси абсцисс равен значению производной в точке касания, найдём производную функции:

.

По условию Значит, .

Отсюда

, , .

Получили два значения абсциссы точки касания:

, ,

т.е. существует две точки касания, в которых касательная образует угол с осью .

Найдём соответствующие ординаты точек касания, подставляя значения в формулу функции:

Приходим к ответу: в точках и касательная к заданной кривой образует с осью угол

Пример 3. Найти острый угол между параболами и в точке их пересечения, имеющей отрицательную абсциссу.

Решение. Угол между двумя кривыми в точке их пересечения - это угол между касательными к этим кривым, проведёнными в точке их пересечения. Тангенс этого угла вычислим по формуле:

(13)

где и -угловые коэффициенты заданных парабол.

Найдём точку пересечения этих парабол. Для этого решим систему:

Отсюда Условие задачи удовлетворяет точка Найдём коэффициент

Аналогично найдём :

Воспользуемся формулой и получим:

,

откуда

Пример 4. Тело движется прямолинейно по закону Найти скорость движения тела в тот момент, когда ускорение равно нулю.

Решение. Согласно формуле (11) скорость есть производная пути, а, согласно формуле (12), ускорение есть производная от скорости.

Последовательно вычислим производные:

Найдём момент времени, когда ускорение равно нулю:

Вычислим скорость движения тела в момент времени

 





Поделиться с друзьями:


Дата добавления: 2017-03-18; Мы поможем в написании ваших работ!; просмотров: 256 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Люди избавились бы от половины своих неприятностей, если бы договорились о значении слов. © Рене Декарт
==> читать все изречения...

2475 - | 2271 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.012 с.