Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Последовательность независимых испытаний. Формула Бернулли. наивероятнейшее число наступления события. Формула Пуассона




Пусть проводится серия из n испытаний, в каждом из которых событие А может наступить с одной и той же вероятностью p или не наступить с вероятностью q=1-p, независимо от номера испытания и результата предыдущего опыта. Такие серии опытов называются последовательностью независимых испытаний или схемой Бернулли. В связи со схемой Бернулли рассматриваются такие задачи: 1) найти вероятность того, что в серии из n испытаний событие А наступит ровно k раз: ; 2) найти вероятность того, что в серии из n испытаний событие А наступит не менее чем раз и не более, чем раза:

Указанные вероятности находят по формуле Бернулли:

Если число n велико, а p не слишком мало, то для вычисления вероятности можно воспользоваться приближенными (асимптотическими) формулами Муавра-Лапласа (локальная теорема Муавра-Лапласа; интегральная теорема Муавра-Лапласа).

Локальная теорема Муавра – Лапласа:

, где и

Интегральная теорема Муавра – Лапласа:

, где

Функции j(´) и Ф(х) табулированы, то есть таблицы значений этих функций приведены в каждом учебнике по теории вероятностей. Можно указать некоторые свойства этих функций:j(-x)=j(x); Ф(-х)=-Ф(х); Ф(0)=0; Ф(х) ® 0,5 при х ® ¥.

Если число испытаний n велико, а вероятность появления события А в каждом испытании мала, то для вычисления вероятности появления k раз события А в серии из n испытаний можно воспользоваться формулой Пуассона

, где l=n×p.

Число успехов, при котором достигается наибольшая из возможных вероятностей, называется наивероятнейшим числом успехов. Оно определяется как целое число на промежутке np – q£ m £ np+p.

 

Формула Бернулли

Теорема: Если Вероятность p наступления события Α в каждом испытании постоянна, то вероятность того, что событие A наступит k раз в n независимых испытаниях, равна: , где .

Наивероятнейшее число наступления события

Число k0 называют наивероятнейшим, если вероятность того, что событие наступит в этих испытаниях k0 раз, превышает вероятности остальных возможных исходов испытаний.

Наивероятнейшее число k0 определяют из двойного неравенства

np-q≤k0≤np+p,

причем:

а) если число nр-q — дробное, то существует одно наивероят нейшее чиcло k0;

б) если число nр-q — целое, то существует два наивероятнейших числа, а именно: k0 и k0+1;

в) если число nр—целое, то наивероятнейшее число k0 = nр.

Формула Пуассона

Теорема. Если веро ят ность наступления события в каждом испытании постоянна и мала, а число независимых испытаний достаточно велико, то вероятность наступления события ровно раз приближенно равна

,(3.4)

где .

Доказательство. Пусть даны вероятность наступления события в одном испытании и число независимых испытаний . Обозначим . Откуда . Подставим это выражение в формулу Бернулли:

При достаточно большом!!n,, и сравнительно небольшом!!m,, все скобки, за исключением предпоследней, можно принять равными единице, т.е.

Учитывая то, что достаточно велико, правую часть этого выражения можно рассмотреть при , т.е. найти предел

Тогда получим


 

№15. Некоторые законы распределения непрерывных случайных величин


Равномерное распределение
Равномерным называется распределение непрерывной случайной величины Х все значения которой лежат на отрезке [a;b] и имеют при этом постоянную плотностьраспределения площадь под кривой распределения равна 1 и поэтому с(в-а)=1 вероятность попадания случайной величины Х на интервал от (α;β) α=а, если α<аβ=в, если β>восновные числовые характеристики закона распределения плотности вычисляютсяпо общим формулам и они равны
Нормальный закон распределения (закон Гаусса) Нормальным называется распределение случайной величины Х если ф-ция плотностираспределения Полученное выражение через элементарные функции не может быть выражено, такая функция так называемый интеграл вероятности для которой составлены таблицы,чаще всего в качестве такой функции используют Часто по условию задачи необходимо определить вероятность попадания случайнойвеличины Х на участок симметричный математическому ожиданию.

Биномиальное распределение.

Биномиальным называют законы распределения случайной величины Х числа появления некоторого события в n опытах если вероятность р появления события в каждом опыте постоянна

Сумма вероятностей представляют собой бином Ньютона

Для определения числовых характеристик в биномиальное распределение подставить вероятность которая определяется по формуле Бернули.

При биномиальном распределении дисперсия равна мат. Ожиданию умноженному на вероятность появления события в отдельном опыте.

Распределение Пуассона

Когда требуется спрогнозировать ожидаемую очередь и разумно сбалансировать число и производительность точек обслуживания и время ожидания в очереди. Пуассоновским называют закон распределения дискретной случайной величины Х числа появления некоторого события в n-независимых опытах если вероятность

того, что событие появится ровно m раз определяется по формуле.

a=np

n-число проведенных опытов

р-вероятность появления события в каждом опыте

В теории массового обслуживания параметр пуассоновского распределения определяется по формуле

а=λt, где λ - интенсивность потока сообщений t-время

Необходимо отметить, что пуассоновское распределение является предельным случаем биномиального, когда испытаний стремится к бесконечности, а вероятность появления события в каждом опыте стремится к 0.

Показательное (экспоненциальное распределение) Показательным называют распределение непрерывной случайной величины Х котороеописывается следующей дифференциальной функцией Экспоненциальное распределение для непрерывных случайных величин является аналогом распределения Пуассона для дискретных случайных величин и имеетследующий вид. вероятность попадания случайной величины Х на интервал (α;β) Следует отметить, что время безотказной работы удовлетворяется именнопоказательному закону, а поэтому это понятие часто используется в понятиинадежности.

Теорема Ляпунова.

Пусть с ,… последовательность попарно независимых случайных величин с математическими ожиданиями M и дисперсиями D , причём эти величины обладают следующими двумя свойствами:

1) Cуществует такое число L, что для любого i имеет место неравенство , т, е. все значения случайных величин, как говорят, равномерно ограничены, относительно математических ожиданий;

2) Сумма неограниченно растёт при

Тогда при достаточно большом n сумма имеет распределение, близкое к нормальному.

Пусть и математическое ожидание и дисперсия случайной величины . Тогда

 





Поделиться с друзьями:


Дата добавления: 2017-03-18; Мы поможем в написании ваших работ!; просмотров: 590 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Если президенты не могут делать этого со своими женами, они делают это со своими странами © Иосиф Бродский
==> читать все изречения...

2487 - | 2350 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.013 с.