Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Последовательность решения. 1. Строим проекции пирамиды и призмы.




1. Строим проекции пирамиды и призмы.

2. На горизонтальной плоскости проекций Н отмечаем характерные точки пересечения ребер пирамиды с гранями призмы (1, 2, 3, 4, 5, 7)

3. Находим фронтальные проекции данных точек на соответствующих ребрах пирамиды (1', 2', 3', 4', 5', 7'). Например, точки 7 и 2 лежат на ребре bd, значит точки 7' и 2' строим на ребре b'd'.

4. Определяем ребра призмы, проходящие через “тело пирамиды” (ребро Е) на плоскости Н.

5. Проводим вспомогательную прямую из точки d через точку e и находим две вспомогательные точки: одна на ребре bc, вторая на ребре ba. В точке e отмечаем точки 6, 8.

6. Строим вторые проекции вспомогательных точек на b'c' и b'a', соединяем эти точки с вершиной d', при прохождении через призму они пересекут ребро e/, отмечаем точки 6', 8'.

7. Соединяем между собой точки, лежащие на одной грани пирамиды, например: b' c' d' – точки 2', 3', 5', 7'; a'c'd' – точки 1', 3', 4', 5'; a'b'd' – точки 1', 2', 4', 7'; a'b'c' – точек нет. Точки соединяем, перемещаясь вдоль граней призмы (смотрим на плоскости Н): в b'c'd' – точки 2', 3', 5', 6', 7'; a'c'd' точки 1', 3'; 4', 5'; в a'b'd' – точки 1', 2’; 4', 8', 7' соединяли по граням gu, ke и eu.

8. Определяем видимость линии пересечения: если грань пирамиды и грань призмы видимые, то и линия их взаимного пересечения будет видимой, если хотя бы одна из граней фигуры будет невидимой, то и линия будет невидимой. В данном случае грань a'b'd' невидимая, соответственно и линии на ней невидимые. Грань k'e' тоже невидимая, следовательно, линия 6'7' – невидимая.

9. Видимость ребер пирамиды и призмы определяется из видимости грани, с которой пересекается ребро. Если ребро пересекает видимую грань, то оно будет видимым, если ребро пересекает невидимую грань, то, соответственно, ребро будет невидимым. Например, ребро b'd' пересекает грань к'е' в точке 1' и пересекает грань u'g' в точке 6', так как грань к'е' невидимая, то ребро b'1' будет невидимым за призмой (до призмы будет видимым) и часть ребра 6'd' будет видимой, так как грань u'g' – видимая.

Задача № 6

Построить развертки пересекающихся многогранников – призмы и пирамиды. Показать на развертках линию их пересечения. Условия взять из задачи № 5.

Указания к решению задачи № 6

Развертку призмы выполняют на отдельном листе бумаги. Все ребра должны быть обозначены теми же символами, что на проекционном чертеже. Для построения развертки пирамиды необходимо предварительно в задаче № 6 показать построение истинных длин всех ребер пирамиды. Далее методом засечек истинными длинами ребер строят истинные размеры треугольников, образующих боковую поверхность пирамиды, последовательно достраивая их друг к другу. На развертках пирамиды и призмы показываем линию их пересечения.

Пример решения задачи №6

 
 





Поделиться с друзьями:


Дата добавления: 2017-02-11; Мы поможем в написании ваших работ!; просмотров: 518 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Надо любить жизнь больше, чем смысл жизни. © Федор Достоевский
==> читать все изречения...

2332 - | 2011 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.007 с.