Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


П.1. Действительные числа и координатная прямая




Из СШ известны следующие обозначения:

N – множество натуральных чисел,

Z – множество целых чисел,

Z0 – множество целых неотрицательных чисел,

Q – множество рациональных чисел,

I – множество иррациональных чисел,

R – множество действительных чисел.

В курсе СШ под действительным числом понимают бесконечную десятичную дробь без 9 в периоде. Если бесконечная десятичная дробь – периодическая, то это рациональное число, а если бесконечная десятичная дробь – непериодическая, то это иррациональное число.

Из курса математики СШ известно, что множество, состоящее и рациональных и иррациональных чисел, называется множеством действительных чисел (R). На множестве R вводятся операции «сложения», «умножения», отношение порядка (сравнение). Формулируются 3 группы аксиом:

I. Аксиомы сложения и умножения

1. a + b = b + a

2. a + (b + c)= (a + b) + c

3. a ∙ b = b ∙ a

4. a ∙ (b ∙ c)= (a ∙ b) ∙ c

5. (a + b) ∙ c= a ∙ c + b ∙ c

6. Существует число 0 такое, что а + 0 = а для любого действительного числа а

7. Для любого действительного числа а существует число – а такое, что а + (– а) = 0

8. Существует число 1≠0 такое, что а ∙ 1 = а для любого действительного числа а

9. Для любого действительного числа а ≠0существует число а –1 такое, что а ∙ а –1 = 1

II. Аксиомы порядка

Для любых

1. Для любых либо , либо .

2. Если , то x=y.

3. Если , то .

4. Если ху, то для любого z выполняется х + zу + z

5. Если ху, то для любого z > 0 выполняется х ∙ zу ∙ z,

а для любого z < 0 выполняется х ∙ zу ∙ z.

III. Аксиома непрерывности. Пусть X и Y два непустых множества действительных чисел. Если выполняется неравенство , то , такое, что .

Все остальные свойства можно получить из этих аксиом.

Такой подход к определению множества действительных чисел называется аксиоматическим, действительные числа – это множество, элементы которого удовлетворяют аксиомам групп I–III.

Между множеством действительных чисел и точками любой прямой можно установить взаимно однозначное соответствие.

Рассмотрим любую прямую и отметим на ней произвольно точку 0 – начало отсчёта. Точка 0 разбивает данную прямую на два луча. Один из них назовём положительным и обозначим стрелкой, а другой отрицательным. От точки 0 отложим на положительном луче произвольный отрезок и назовём его единичным (его длину примем за единицу измерения длин). Из СШ известно, что прямая, с выбранным на ней началом отсчёта 0, положительным направлением и единичным отрезком, называется координатной прямой.

Возьмем произвольное действительное число х. Возможны случаи:

1) x >0. Отложим на положительном луче координатной прямой от точки 0 отрезок длины x. Правый конец полученного отрезка – соответствующая x точка.

2) x <0. Отложим на отрицательном луче координатной прямой от точки 0 отрезок длины (– x). Левый конец полученного отрезка – соответствующая x точка.

3) x =0, соответствующая ему точка – точка 0.

Возьмем произвольную точку х на координатной прямой. Возможны случаи:

1) точка x попала на положительный луч координатной прямой. Тогда ей соответствует число x >0, равное расстоянию от точки 0 до точки x.

2) точка x попала на отрицательный луч координатной прямой. Тогда ей соответствует число x <0, равное расстоянию от точки 0 до точки x, взятому со знаком минус

3) точка x попала в начало атсчета координатной прямой. Тогда ей соответствует число x =0.

Таким образом, установили взаимно однозначное соответствие между множеством действительных чисел и точками координатной прямой. Поэтому в математике принято множество R (действительных чисел) называть числовой прямой, а его элементы, т.е. действительные числа, точками числовой прямой. Часто для наглядности вместо действительного числа х рассматривают ту точку на координатной прямой, которая соответствует этому действительному числу. Эту точку называют геометрическим изображением числа х и обозначают так же через х.





Поделиться с друзьями:


Дата добавления: 2016-12-29; Мы поможем в написании ваших работ!; просмотров: 984 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Самообман может довести до саморазрушения. © Неизвестно
==> читать все изречения...

2513 - | 2360 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.009 с.