Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


П.2. Соответствия между множествами. Взаимно однозначные соответствия




ГЛАВА 1

СООТВЕТСТВИЯ. ДЕЙСТВИТЕЛЬНЫЕ ЧИСЛА

СООТВЕТСТВИЯ МЕЖДУ МНОЖЕСТВАМИ

П.1. Множества и операции над ними

Основными неопределяемыми понятиями математики являются «множество», «элемент множества». Множества представляют собой совокупность каких-либо предметов (объектов), обладающих общим свойством. Эти объекты бывают разной природы: числовые, геометрических фигур, людей и т.д. Договоримся называть их «элементами множества». Множества принято обозначать большими буквами латинского алфавита А,В, С,…, Х, У, Z, а элементы множеств – маленькими буквами латинского алфавита a, b, c, …, x, y, z. Если некоторый объект a является элементом некоторого множества A, то говорят, что «элемент а принадлежит множеству А» и обозначают а А. Таким образом, множества состоят из элементов и в зависимости от их числа бывают конечными и бесконечными, пустыми (Æ). Для записи множеств используют фигурные скобки, в которых через запятую перечисляются все элементы. Но если множество бесконечное, то перечислить все его элементы мы не сможем. В таких случаях мы будем использовать такую запись:

А = { x | свойство, которым обладают все элементы}.

В нашем курсе мы будем изучать в основном числовые множества.

Далее будем использовать следующие кванторы

· общности вместо слов «для любых» или «для всех (каждого)»

· существования вместо слов «существует» или «есть»

и общепринятые математические символы вместо слов:

· А В «если А, то В» или «из А следует В»

· А В «А тогда и только тогда, когда В» или «А равносильно В»

· ˄ знак конъюнкции, заменяет союз «и»

· ˅ знак дизъюнкции, заменяет союз «или»

Множества между собой могут находиться или нет в следующих отношениях:

ü пересечения – множества А и В находятся в отношении пересечения (А∩В), если существуют элементы, принадлежащие и одному и другому множествам одновременно и существуют элементы, принадлежащие только множеству А и только множеству В;

ü включения – множества А и В находятся в отношении включения, если каждый элемент множества А принадлежит множеству В, говорят, что множество А является подмножеством множества В и обозначают AÌB;

ü равенства – множества A и B называются равными (A = B), если они состоят из одних и тех же элементов.

Следствия

1.1. Каждое множество является подмножеством самого себя: A Ì А.

1.2. Пустое множество является подмножеством любого множества A: Æ Ì A.

Множества A и Æ называют несобственными подмножествами множества A, все остальные – собственными подмножествами множества A.

Пусть А и В — некоторые множества.

Определение 1.1. Объединением двух множеств А и В называется множество, состоящее из тех и только тех элементов, которые принадлежат хотя бы одному из этих множеств. Обозначается: АÈВ.

На рис. 1 показано объединение множеств А и В при помощи диаграммы Эйлера–Венна.

Рис. 1

Прежде, чем рассмотреть примеры объединения множеств, заметим, что согласно определению объединения х Î А È В Û х Î А ˅ х Î В.

Свойства объединения множеств

Из определения следует, что в А È А входят те же самые элементы, т.е. А È А = А. Вообще, когда B Ì A, то А È В = А. В частности, А È Æ = А.

Операция объединения подчиняется переместительному закону:

А È В = В È А.

Операцию объединения можно распространить на любое число множеств. Когда А, В, С — три произвольные множества, то (А È ВС есть множество элементов, каждый из которых принадлежит хотя бы одному из множеств А, В, С.

В общем случае объединение совокупности множеств обозначается и состоит из элементов, принадлежащих хотя бы одному из множеств .

Операция объединения подчиняется сочетательному закону:

(А È ВС = А È (В È С).

Определение 1.2. Пересечением множеств A и B называется множество, состоящее их тех и только тех элементов, которые одновременно принадлежат множествам A и B. Обозначается: АÇВ.

Согласно определению пересечения х Î А Ç В Û х Î А ˄ х Î В.

Пересечение множеств А и В иллюстрируется на рис. 2.

Рис. 2

Свойства пересечения множеств

Очевидно, что А Ç А = А; вообще, когда В Ì А, то В Ç А = В. Из определения пересечения следует: А Ç В = В Ç А, т.е. операция пересечения коммутативна.

Имеет место и следующее равенство: А Ç Æ = Æ.

Операцию пересечения легко распространить и на случай больше двух множеств. Рассмотри три множества А, В, С. Пересечение А Ç В есть множество общих элементов множеств А и В, поэтому (А Ç В) Ç С есть множество элементов, принадлежащих одновременно трём множествам А, В, С.

Аналогично определяется и операция пересечения любого числа множеств. Из приведенного правила пересечения трех множеств следует, что операция пересечения ассоциативна: (А Ç В) Ç С = А Ç (В Ç С). Поэтому используется запись А Ç В Ç С. В общем случае пересечение совокупности множеств (i = 1, 2, …, n) обозначается и состоит из элементов, принадлежащих сразу всем множествам , .

Заметим, что относительно двух операций пересечения и объединения множеств выполняются два дистрибутивных (распределительных) закона:

1) (А Ç В) È С = (А È С) Ç (В È С);

2) (А È В) Ç С = (А Ç С) È (В Ç С).

Докажем второй из этих законов (первый доказывается аналогично).

Пусть х Î (А È В) Ç С. Значит, х Î А È В и х Î С. Из того, что х Î А È В, следует, что обязательно выполняется по крайней мере одно из двух утверждений: х Î А или х Î В. Когда х Î А, то из того, что х Î С, следует, что х Î А Ç С. Значит, х Î (А Ç С) È (В Ç С). Когда же х Î В, то из того, что х Î С, следует, что х Î В Ç С, но тогда х Î (А Ç С) È (В Ç С).

Таким образом, любой элемент множества (А È В) Ç С является элементом и множества (А Ç С) È (В Ç С).

Докажем теперь обратное. Пусть х Î (А Ç С) È (В Ç С). Возможен один из случаев: х Î А Ç С или х Î В Ç С, т.е. х Î А и х Î С, или х Î В и х Î С. Отсюда получаем, что х Î С и х Î А È В, а это свидетельствует о том, что х Î (А È ВС. Таким образом, второй дистрибутивный закон доказан полностью.

Определение 1.3. Разностью двух множеств A и B называется множество, состоящее из тех и только тех элементов множества A, которые не принадлежат В. Обозначается: А \ В.

Согласно определению разности х Î А \ В Û х Î А ˄ х Ï В.

Графическое изображение разности А \ В множеств А и В показано на рисунке 3 (заштрихованная область — это А \ В).

Рис. 3

Из определения разности следует, в частности, что А \ А = Æ; А \ В ¹ В \ А.

Определение 1.4. Если множество B является подмножеством множества A, то разность множеств A и B называется дополнением множества B до множества A. Обозначается:

А \ В=САВ или или

Графическое изображение дополнения множества В до множества А показано на рис. 4.

Рис. 4

П.2. Соответствия между множествами. Взаимно однозначные соответствия

Основным объектом математического анализа является «функция». Введем это понятие через понятие «соответствие».

Пусть заданы два множества X и Y. Если для каждого элемента а Î Х указан (один, или несколько, или ни одного) элемент b Î Y, с которым сопоставляется а, то говорят, что между множествами X и Y установлено соответствие (бинарное отношение).

В основе понятия «соответствия» лежит «упорядоченная пара» (короче «пара»).

Определение 1.5. Упорядоченной парой называется множество, состоящее из двух элементов, для которых указан порядок следования. Обозначают (х; у); элемент х называют первой компонентой (координатой), увторой компонентой (координатой) пары.

Основное свойство пары: две пары равны равны соответственно их компоненты, т.е. (х 1; у1)=(х2; у2) х1= х2, у12.

Не следует путать множество { х; у } и пару (х; у): (х; у) (у; х), а { х; у }={ у; х }.

Определение 1.6. Упорядоченной тройкой (тройкой) называется пара ((х; у), z), первая координата которой – пара (х; у), а вторая – z. Обозначают (х;у; z).

Аналогично определяются упорядоченные четвёрки, пятёрка, и т. д. n -ки.

Определение 1.7. Декартовым (прямым) произведением множеств Х и Y называется множество, состоящее из всех возможных пар (х; у), где , и обозначают .

C помощью символов это определение можно записать так:

= {(х; у)| , }

Пример 1.1.

Пусть Х = {1, 2, 3}, Y = { k, l }. Найти Х ´ Y и Y ´ Х.

Решение. Декартовое произведение Х ´ Y состоит из шести элементов:

Х ´ Y = {(1, k), (2, k), (3, k), (1, l), (2, l), (3, l)}.

Выпишем теперь декартовое произведение

Y ´ Х = {(k, 1), (k, 2), (k, 3), (l, 1), (l, 2), (l, 3)}.

Таким образом, Х ´ Y ¹ Y ´ Х (не выполняется ассоциативный закон). Результат декартового произведения зависит от порядка сомножителей.

Принято считать, что для любого множества Х справедливы равенства:

· ;

· .

Множество называется декартовым квадратом.

Если множества X и Y – числовые, то пары элементов (x; y) можно рассматривать как координаты точек на плоскости. В этом случае декартово произведение можно изобразить в декартовой системе координат.

Определение 1.8. Любое подмножество декартового произведения множеств называется соответствием между множествами Х и Y или отношением (бинарным отношением) между элементами множеств Х и Y.

Будем обозначать соответствия маленькими буквами латинского (f, g,..) и греческого (φ, ψ…)алфавитов. Множество всех первых компонент пар из соответствия f называют областью определения соответствия f (обозначают D (f)), а множество всех вторых компонент пар из соответствия f называют областью значения соответствия f (обозначают E (f)).

Пусть f – соответствие между множествами Х и Y. Если , то говорят, что «при соответствии f элемент x соответствует элементу y». В этом случае элемент у называется образом элемента х, а элемент xпрообразом элемента y при соответствии f.

Пример 1.2. Между элементами множеств X = {2, 3, 5, 11} и Y = {6, 7, 9, 10} задано соответствие f: «число x является делителем числа y».

Очевидно, что f – множество пар элементов(f ={(2, 6), (2, 10), (3, 6), (3, 9), (5, 10)}), находящихся в заданном отношении, является подмножеством декартова произведения множеств

X´Y = {(2, 6), (2, 7), (2, 9), (2, 10), (3, 6), (3, 7), (3, 9), (3, 10), (5, 6), (5, 7), (5, 9), (5, 10), (11, 6), (11, 7), (11, 9), (11, 10)}.

Полным образом элемента a из множества X называется множество всех элементов из Y, которые соответствуют элементу а. Обозначают f (а). В частности, для примера 1.2

f (2)={6, 10}, f (3)={6, 9}, f (5)={10}, f (11)= Æ.

Полным прообразом элемента b из множества Y называется множество всех элементов из Х, которым b соответствует. Обозначают f –1 (b). В частности, для примера 1.2

f –1 (6)={2, 3}, f –1 (7)= Æ, f –1 (9)={3}, f –1 (10)= {2, 5}.

Множество всех элементов из X, имеющих непустые образы, называется множеством (областью) определения соответствия, и обозначают D(f), а множество всех элементов из Y, имеющих непустые прообразы – множеством (областью) значений соответствия и обозначают Е(f). Так, в примере 1.2 область определения соответствия f есть множество D(f) ={2, 3, 5}, а множество значений соответствия f есть множество Е(f) = {6, 9, 10}.

Если множества X и Y совпадают, то говорят об отношении между элементами множества X.

Замечание 1.1. Соответствие между множествами можно задавать

а) перечислением пар

Y X        
  ´     ´
  ´   ´  
        ´
         

б) таблицей

 

в) графами

г) с помощью графика (если множества числовые)

Соответствия могут быть различных видов. Приступим к их изучению.

Пусть f соответствие между элементами множеств X и Y. Соответствие f называется всюду определенным, если множество D(f) = Х. Если E(f) = Y. Если же E(f) = Y, то соответствие называют сюръективным. На рис. 5 а и 5 б представлено всюду определенное сюръективное соответствие. Соответствия, представленные на рис. 5 в и 5 г, не сюръективны, а соответствие, изображенное на рис. 5 г, не всюду определенное.

Рис. 5

Соответствие называется инъективным, если любой элемент из E(f) соответствует единственному элементу из D(f). На рис. 5 а изображено инъективное соответствие.

Особое место занимают функциональные соответствия.

Определение 1.9. Соответствие f между множествами Х и Y, при котором каждому соответствует один и только один называется функциональным (функцией). Элемент называется аргументом функции f, а соответствующий ему элемент называется значением функции f в точке х.

Определение 1.10. Если область определения функции f состоит из некоторого множества действительных чисел, то f называется функцией одной действительной переменной. Если область определения функции f состоит из упорядоченных n -ок действительных чисел, то f называется функцией n действительных переменных. Если область значений функции f состоит из некоторого множества действительных чисел, то f называется действительной функцией.

Пример 1.3. Среди соответствий, изображенных на рис. 6, функциями будут f и p. Их областями определения будут, соответственно, D (f) = { a, b, c }, D (p) = { a, b, c }, а множествами значений E (f) = { 1, 3 }, E (p) = { 1, 2, 3 }.

Если , и f – функциональное соответствие между элементами x и y, то это записывают так: y = f (x) или или


Рис. 6

Определение 1.7. Соответствие между элементами множеств Х и Y, при котором каждому элементу множества Х соответствует единственный элемент множества Y, и каждый элемент множества Y соответствует только одному элементу из множества Х, называется взаимно однозначным (или биективным).

Определение 1.8. Множества Х и Y называются эквивалентными, или равномощными, если между ними каким-либо способом можно установить взаимно однозначное соответствие.

Эквивалентность двух множеств обозначается так: X ~ Y.

Пусть задано соответствие f между множествами X и Y. Обратным ему называется соответствие f –1 между множествами Y и X, состоящее из таких пар (у; х), для которых верно, что (х; у) f. Соответствия f и f –1 называют взаимно обратными.

ДЕЙСТВИТЕЛЬНЫЕ ЧИСЛА





Поделиться с друзьями:


Дата добавления: 2016-12-29; Мы поможем в написании ваших работ!; просмотров: 524 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Чтобы получился студенческий борщ, его нужно варить также как и домашний, только без мяса и развести водой 1:10 © Неизвестно
==> читать все изречения...

2432 - | 2320 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.187 с.