Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Лабораторная работа №7 Вычисление интегралов в задачах геометрии и механики




Цель работы: вычисление интегралов в задачах геометрии и механики в программе MathCad.

Указания к выполнению лабораторной работы:

I Вычислить площадь плоской фигуры, ограниченной заданными линиями.

1 Записать уравнение кривых, которые ограничивают площадь плоской фигуры.

2 Найти точки их пересечения, для того чтобы использовать их у двукратном интегрировании.

3 Обратиться на панели Символы к функции simplify.

4 Ввести оператор интегрирования. В соответствующих местах заполнить имя первой переменной и границы интегрирования.

5 На месте ввода функции под интегралом ввести еще один оператор интегрирования, границы интегрирования и подынтегральную функцию

II Вычислить координаты центру тяжести пластины.

1 Записать уравнения кривых, которые описывают область D пластины.

2 Найти точки их пересечения, для того чтобы использовать их в двукратном интегрировании.

3 Найти площадь S однородной пластинки через двойной интеграл.

3.1 Обратиться на панели Символы к функции simplify.

3.2 Ввести оператор интегрирования. В соответствующих местах заполнить имя первой переменной и границы интегрирования.

3.3 На месте ввода функции под интегралом ввести еще один оператор интегрирования, границы интегрирования и подынтегральную функцию

4 Найти аналогично статические моменты Mx и My пластины относительно осей Ох и Оу как двойные интегралы

5 Определить координаты центра тяжести как отношение подынтегральной функции, которая определяет статические моменты пластины относительно осей Ох и Оу

 


Таблица 7.1 – Варианты задания к лабораторной работе №7

Номер варианта Функции для вычисления площади фигуры Функции для вычисления координат центра тяжести фигуры
     
  x=y2-2y; x+y=0
  y=2-x; y2=4x+4 y=x2; y=2x2; x=1;x=2
  y2=4x-4; y2=2x (извне параболы)   y2=x; x2=y
  3y2=25x; 5x2=9y y=
  y2+2y-3x+1=0; 3x-3y-7=0
  y=4x-4x2; y=x2-5x
  x=4-y2; x+2y-4=0
  y2=4(x-1); x2+ y2=4 (извне параболы)
  x=y2-2y; x+y=0
  y=2-x; y2=4x+4
  y2+2y-3x+1=0; 3x-3y-7=0
  y=4x-4x2; y=x2-5x   y2=x; x2=y
  x=4-y2; x+2y-4=0 y=
  x=y2-2y; x+y=0
  y=2-x; y2=4x+4 y=x2; y=2x2; x=1;x=2
  y2+2y-3x+1=0; 3x-3y-7=0
  y=4x-4x2; y=x2-5x
  x=4-y2; x+2y-4=0
  x=y2-2y; x+y=0
  y=2-x; y2=4x+4
  y2=4(x-1); x2+ y2=4 (извне параболы)
  y=2-x; y2=4x+4 y=x2; y=2x2; x=1;x=2

 

Продолжение табл. 7.1

     
  y2=4x-4; y2=2x (извне параболы)   y2=x; x2=y
  x=y2-2y; x+y=0 y=
  y=2-x; y2=4x+4
  3y2=25x; 5x2=9y
  x=y2-2y; x+y=0
  y2+2y-3x+1=0; 3x-3y-7=0
  y=4x-4x2; y=x2-5x y=x2; y=2x2; x=1;x=2
  x=4-y2; x+2y-4=0 y2=x; x2=y
         

 

Пример

I Вычислить площадь фигуры, которая ограничена линиями x=4y-y2 и x+y=6.

1 Найти координаты точек пересечения заданных линий, для чего необходимо решить систему уравнений (одной из встроенных функций MathCad, графически или решить систему уравнений).

x=4y-y2

x+y=6.

В результате будут получены точки пересечения А(4;2) и В(3;3).

2 Записать формулу для вычисления площади через кратный интеграл и использовать на панели Символы функцию simplify

.

II Вычислить координаты центра тяжести пластины, которая ограничена кривыми y2=4x+4 i y2=-2x+4.

Площадь

Статические моменты относительно осей Ох и Оу

 

Координаты центра тяжести

Контрольные вопросы

 

1 Какие геометрические характеристики можно вычислить с использованием интегралов?

2 Как вычислить центр тяжести через интегралы?





Поделиться с друзьями:


Дата добавления: 2016-12-06; Мы поможем в написании ваших работ!; просмотров: 790 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Даже страх смягчается привычкой. © Неизвестно
==> читать все изречения...

2456 - | 2156 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.015 с.