Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Лабораторная работа №6 Вычисление производных в задачах геометрии и частных производных




Цель работы: вычисление производных в задачах геометрии и нахождение частных производных высоких порядков в программе MathCad.

Указания к выполнению лабораторной работы:

I Составить уравнение касательной и нормали к линии, которая задана уравнением y(x)=f(x) в точке М(x0,y0).

1 Задать значения х0 и у0 в точке М.

2 Записать уравнение линии у(х).

3 Определить производную от функции у(х) , использовав панель вычислений и панель символов. Присвоить значение производной функции уу(х): = .

4. Записать уравнение касательной у виде

,

 

5. Аналогично записать уравнение нормали

 

6. Построить графики касательной и нормали.

7 Отформатировать графики.

II Выполнить числовое и символьное вычисление частных производных высшего порядка от функции трех переменных.

1 Записать функцию, от которой будут вычисляться производные второго порядка.

2 Обратиться к панели вычислений и выбрать оператор дифференцирования.

3 В соответствующем месте заполнения оператора записать функцию, переменную для дифференцирования и порядок дифференцирования.

4 Нажать правой кнопкой мыши на знак оператора дифференцирования и в контекстному меню выбрать View Derivative As (Показать производную как), установить флажок Partial Derivative (Частная производная).

5 Отметить оператор дифференцирования и обратиться к панели Символика/Вычислить/В символах.

6 Задать числовые значения для переменных, от которых вычисляется производная.

7 Вычислить числовые значения производных.

 

 

Таблица 6.1 – Варианты заданий к лабораторной работе №6

Номер варианта Функция f(x) для определения касательной и нормали Точка М (х0,у0) для определения касательной и нормали Функция f(x,у,z) для вычисления частной производной Точка М (х0,у0,z0) для числового вычисления частной производной
         
  х2 -3х+5 (2,3) х2 -3х3y-4y2+2y-z3 (0,1,2)
  х2 +2х+6 (-1.1) z2ex*x+y*y (0,0,0)
  х3-3х2 (3,1) xcos(y)+yz4 (1,0,0)
  0.5х-sin(x) (0, p/3) z ln (x2-y2) (3,1,3)
  (x-5)ex (4,0) zsin(xy)+z2 (1,1,1)
  1-(x-2)4/5 (2,1) х2 +2y2-3xy-4z2 (0,0,0)
  x5+5x-6 (0,-1) zx× ln (y)+xy2z (0,2,1)
  (x3+4)/x2 (2,3) y(x-zcos(x)) (0,0,0)
  (0,1) sin(x)(cos(z)+cos(y)) (1,0,0)
  sin2(x) (0.5,0.5) x4yz+sin(y) (2,1,0)
  x2-0.5x4 (0,0) (x-y2)*(z3-x) (1,1,1)
  х3-3х2 (0, p/3) х2 -3х3y-4y2+2y-z3 (0,1,2)
  0.5х-sin(x) (4,0) z2ex*x+y*y (0,0,0)
  (x-5)ex (2,1) xcos(y)+yz4 (1,1,1)
  1-(x-2)4/5 (2,1) z ln (x2-y2) (3,1,3)
  x5+5x-6 (0,-1) zsin(xy)+z2 (1,1,1)
  0.5х-sin(x) (0, p/3) х2 +2y2-3xy-4z2 (0,0,0)
  (x-5)ex (4,0) zx× ln (y)+xy2z (0,2,1)
                 

 

 

Продолжение табл. 6.1

 

         
  1-(x-2)4/5 (2,1) y(x-zcos(x)) (0,0,0)
  x5+5x-6 (0,-1) sin(x)(cos(z)+cos(y)) (1,0,0)
  (x3+4)/x2 (2,3) zx× ln (y)+xy2z (0,2,1)
  х3-3х2 (3,1) y(x-zcos(x)) (0,0,0)
  0.5х-sin(x) (0, p/3) sin(x)(cos(z)+cos(y)) (1,0,0)
  (x-5)ex (4,0) x4yz+sin(y) (2,1,0)
  1-(x-2)4/5 (2,1) (x-y2)*(z3-x) (1,1,1)
  x5+5x-6 (0,-1) х2 -3х3y-4y2+2y-z3 (0,1,2)
  (x3+4)/x2 (2,3) z2ex*x+y*y (0,0,0)
  (0,1) xcos(y)+yz4 (1,0,0)
  sin2(x) (0.5,0.5) z ln (x2-y2) (3,1,3)
  x2-0.5x4 (0,0) zsin(xy)+z2 (1,1,1)
                 

 

Пример

I Составить уравнение касательной и нормали к линии, которая задана уравнением y(x)=х4 -3х3+4х2-5х+1 в точке М(0,1).

1 Задать значения х0 и у0 в точке М: х0:=0, у0:=1.

2 Записать уравнения лини у(х):= х4 -3х3+4х2-5х+1.

3 Определить производную от функции у(х) , использовав панель вычислений и панель символов. Присвоить значение производной функции уу(х): = .

4 Записать уравнение касательной в виде

,

.

 

 

5 Аналогично записать уравнение нормали

 

 
 

 

6 Построить графики касательной и нормали.

7 Отформатировать графики.

Рисунок 24- График касательной и нормали

 

ІІ Записать функцию, от которой будут вычисляться производные второго порядку

2 Обратиться к панели вычислений и выбрать оператор дифференцирования .

3 В соответствующие места заполнения оператора записать функцию, переменную для дифференцирования и порядок дифференцирования.

4 Нажать правой кнопкой мыши на знак оператора дифференцирования и в контекстному меню выбрать View Derivative As (Показать производную как), установить флажок Partial Derivative (Частная производная) (рис.25):

, , .

5 Отметить оператор дифференцирования и обратиться к панели Символика/Вычислить/В символах.

6 Задать числовые значения для переменных, от которых вычисляется производная х:=1, y:=1, z:=1.

7 Вычислить числовые значения производных.

Рисунок 25 – Диалоговое окно Показать производную

Контрольные вопросы

1 Як найти касательную к любой кривой в MathCad?

2 Як найти нормаль к любой кривой в MathCad?

3 Як выполнить символьные вычисления частных производных высокого порядка?

4 Як выполнить числовые вычисления частных производных высокого порядка?






Поделиться с друзьями:


Дата добавления: 2016-12-06; Мы поможем в написании ваших работ!; просмотров: 615 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Сложнее всего начать действовать, все остальное зависит только от упорства. © Амелия Эрхарт
==> читать все изречения...

2189 - | 2073 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.008 с.