Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Вопрос 25 Числовые ряды. Критерий Коши сходимости числового ряда. Следствие: необходимое условие сходимости ряда.




Выражение (1)

где (uk)kÎN — заданная числовая последовательность, называется числовым рядом. Конечные суммы S1 = u1, S2 = u1 + u2,.... Sn = u1 + u2 +...+ un, называются частичными суммами ряда (1).

Если существует конечный предел последовательности частичных сумм (2)

то ряд (1) называется сходящимся, а число S—суммой ряда (1)

 

Необходимое условие сходимости. Если ряд (1) сходится, то

 

Доказательство.

Пусть ряд u1+u2+…+un… сходится, то есть существует конечный предел =S. Тогда имеет место также равенство =S, так как при n и (n-1) . Вычитая почленно из первого равенства второе, получаем - = = un=0, что и требовалось доказать.

 

Критерий Коши. Для того чтобы числовой ряд (1) был сходящимся, необходимо и достаточно, чтобы для любого ε > 0 су­ществовало N = N(ε) такое, что для всех n > N и р = 1, 2, … выполнялось неравенство

Доказательство:

 

Вопрос 26 Ряды с неотрицательными членами. Необходимое и достаточное условие сходимости. Признак сравнения.

Положительный ряд сходится тогда и только тогда, когда последовательность его частичных сумм ограничена сверху.

Необходимое условие

Так как ряд сходится, то последовательность частичных сумм имеет предел. Следовательно она ограничена. А значит она ограничена и снизу и сверху. Доказано

Достаточное условие

Дан положительный ряд и последовательность частичных сумм ограничена сверху. Покажем, что наша последовательность(из членов ряда) неубывающая: S(n + 1) − S(n) = a(n + 1) Теперь используем свойство из теоремы о монотонной последовательности и получим, что последовательность частичных сумм ограничена сверху.

Признак сравнения. Пусть даны два ряда с положительными членами

(17)

и

(18)

и каждый член ряда (17) не превосходит соответствующего члена ряда (18), т.е. выполняется (n = 1, 2, 3, …). Тогда, если сходится ряд (18), то сходится и ряд (17). Если ряд (17) расходится, то ряд (18) также расходится. Этот признак остается в силе, если условие выполняется не для всех n, а лишь начиная с некоторого номера n = N.

Вопрос 27 Признаки Даламбера и Коши сходимости рядов с неотрицательными членами.

Признак Даламбера

Пусть дан знакоположительный числовой ряд

(7)

и пусть существует предел При p<1 ряд (7) сходится, при p>1 ряд (7) расходится.

Доказательство. По условию существует предел . Это означает, что для любого положительного числа Е существует такой номер N, что для всех номеров n³N выполняется условие или

p-E< (10)

Пусть сначала p<1. Выберем Е так, что p+E=q<1. Для всех n³N имеем … или

или

(11)

Рассмотрим ряды

(12)

. (13)

Ряд (13) сходится, так как он является бесконечно убывающей геометрической прогрессией. Тогда ряд (12) сходится, учитывая (11), по признаку сравнения. Ряд (7) сходится по теореме 1.

Пусть теперь p>1. Выберем Е так, что p-E>1. Тогда из левой части неравенства (10) следует, что при n³N выполняется или un+1>un, то есть члены ряда возрастают с возрастанием номера n. Поэтому un¹0, следовательно, ряд расходится по следствию из необходимого признака сходимости. Теорема доказана.

 

Замечания.

1. Если расходимость ряда установлена с помощью признака Даламбера, то un¹0.

2. При р=1 признак Даламбера не даёт ответа о сходимости ряда. В этом случае нужно применять другие признаки сходимости.

3. Признак Даламбера рекомендуется применять при наличии в выражении общего члена ряда показательной функции или факториала.

Признак Коши

Пусть дан знакоположительный числовой ряд u1+u2+…+un… (7)

и пусть существует предел При p<1 ряд (7) сходится, при p>1 ряд (7) расходится.

Доказательство. По условию существует Это означает, что для любого положительного числа Е существует такой номер N, что для всех n³N выполняется условие | | <E или

p-E< <p+E. (14)

Пусть p<1. Выберем Е таким, чтобы выполнялось p+E=q<1. Тогда из (14) получаем <q или un<qn для всех n³N. Рассмотрим ряды

(15)

(16)

Ряд (16) сходится, так как он является бесконечно убывающей геометрической прогрессией. Ряд (15) сходится, учитывая, что un<qn для всех n³N, по признаку сравнения, следовательно, по теореме 1 сходится ряд (7).

Пусть теперь p>1. Выберем Е так, чтобы выполнялось условие
p-E >1. Тогда из (14) получаем >1 или un>1, следовательно, un¹0 и ряд (7) расходится по следствию из необходимого признака сходимости. Теорема доказана.

Вопрос 28 Знакопеременные ряды. Абсолютная сходимость. Знакочередующиеся ряды. Признак сходимости Лейбница.
Числовые ряды, содержащие как положительные, так и отрицательные члены, называются знакопеременными рядами.   Числовой ряд вида u1-u2+u3-u4+…+ +(-1)n-1.un+…, где un – модуль члена ряда, называется знакочередующимсячисловым рядом.   Если сходится и сам знакопеременный ряд и ряд, составленный из абсолютных величин его членов, то говорят, что знакопеременный ряд сходится абсолютно.   Если знакопеременный ряд сходится, а ряд, составленный из абсолютных величин членов этого ряда, расходится, то говорят, что знакопеременный ряд сходитсяусловно.   Признак Лейбница Если для знакочередующегося числового ряда (19) Выполняются два условия: Члены ряда убывают по модулю u1>u2>…>un>…, то ряд (19) сходится, причём его сумма положительна и не превосходит первого члена ряда. Доказательство. Рассмотрим частичную сумму чётного числа членов ряда S2n=(u1-u2)+(u3-u4)+…+(u2n-1-u2n). По условию u1>u2>…>u2n-1>u2n, то есть все разности в скобках положительны, следовательно, S2n возрастает с возрастанием n и S2n>0 при любом n. С другой стороны S2n=u1-[(u2-u3)+(u4-u5)+…+(u2n-2-u2n-1)+u2n]. Выражение в квадратных скобках положительно и S2n>0, поэтому S2n<u1 для любого n. Таким образом, последовательность частичных сумм S2n возрастает и ограничена, следовательно, существует конечный S2n=S. При этом 0<S≤u1. Рассмотрим теперь частичную сумму нечётного числа членов ряда S2n+1=S2n+u2n+1. Перейдём в последнем равенстве к пределу при n→∞: S2n+1= S2n+ u2n+1=S+0=S. Таким образом, частичные суммы как чётного, так и нечётного числа членов ряда имеют один и тот же предел S, поэтому Sn=S, то есть данный ряд сходится. Теорема доказана.   Замечания. 1. Теорема Лейбница справедлива и если условие un>un+1 выполняется, начиная с некоторого номера N. 2. Условие un>un+1 не является необходимым. Ряд может сходиться, если оно не выполняется.  




Поделиться с друзьями:


Дата добавления: 2016-12-06; Мы поможем в написании ваших работ!; просмотров: 552 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Большинство людей упускают появившуюся возможность, потому что она бывает одета в комбинезон и с виду напоминает работу © Томас Эдисон
==> читать все изречения...

2529 - | 2189 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.011 с.