Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Решение дифференциальных уравнений




Дифференциальные уравнения очень часто встречаются при построении

моделей динамики объектов исследования. Они описывают, как правило, изменения параметров объекта во времени. Результатом решения дифференциальных уравнений являются функции, а не числа, как при решении конечных уравнений, вследствие чего методы решения их более трудоемки.

Дифференциальные уравнения описывают также процессом, тепло-массообмен, изменение концентрации вещества, процессы кристаллизации сахара и многие другие. При использовании численных методов решения дифференциальных уравнений:

или y= f (x,y) представляется в табличном виде, т.е. получается
dx совокупность значений Yi и Xi.

Решение носит шаговый характер, т.е. по одной или нескольким начальным точкам (х, у) за один шаг находят следующую точку и т.д. Разница между двумя соседними значениями аргумента h = xi+1 - xi называется шагом.

Наибольшее распространение имеют задачи Коши, в которых заданы начальные условия: при x = x0, y(x0) = y0. Имея их, легко начинать процесс решения, т.е. найти при x1 , y2 - при х2 и т.д.

Основная идея получения простейших вычислительных алгоритмов в одношаговых методах сводится к разложению исходного решения у(х) в ряд Тейлора.

Количество оставленных членов ряда определяет порядок и, следовательно, точность метода. По полученному разложению, зная значения у в точке разложения уi и производную f(xi, yi), находят значения у через шаг h:
yi+1 = yi + ∆yi.

Если в разложении удерживается большее число членов, то необходимо рассчитывать f(xi, yi) в несколько точках (таким способом избегают необходимости прямого вычисления высших производных, присутствующих в разложении в ряд Тейлора).

Расчётные алгоритмы многошаговых методов базируются на построении интерполяционных или аппроксимирующих функций, от которых берётся интеграл.

Численными методами решаются не только отдельные уравнения, но и системы уравнений (чаще всего первого порядка), причем большинство методов решения одного уравнения легко распространяются на решения систем.

К классу одношаговых методов относятся методы Эйлера,
Рунге – Кутта и Эйлера-Коши.

Функциональное уравнение у¢ = f(x,у), связывающее между собой независимую переменную, искомую функцию у(х) и ее производную у (х), называется дифференциальным уравнением 1-го порядка.

Решением (частным) решением уравнения на интервале (а, b) называется любая функция у = (х), которая, будучи подставлена в это уравнение вместе со своей производной ¢ (x) обращает его в тождество относительно xÎ (а,b). Уравнение Ф. (х,y) = 0, определяющее это решение как неявную функцию, называется интегралом дифференциального уравнения. На плоскости с фиксированной декартовой прямоугольной системой координат уравнение Ф (х,y) =0 определяет некоторую кривую, которая называется интегральной кривой дифференциального уравнения.

Если в дифференциальном уравнении у¢ = f(x,у) функция f(x,у) непрерывна в некоторой области D, плоскости Оху и имеет в этой области ограниченную частную производную (x,y), то для любой точки (x0,y0) Î D, в некотором интервале х0 — h £ х £ х0 + h, существует и притом единственное решение у (х) этого уравнения, удовлетворяющее начальному условию

у (хо) - уо.

Это утверждение известно как теорема Коши о существовании и единственности решения дифференциального уравнения с заданным начальным условием.

Для задач подобного типа, выделенных в целый класс задач Коши, помимо аналитических методов решения разработаны методы численного решения.

Метод Эйлера

Значения искомой функции у= у (х) на отрезке [x0,X] находят по формуле:

yk+1 = yk + h×f(xk, yk), (1)

где ук = у (хк), хк+1 = xk + h, (хп = Х), k = 0,1,2,...n -1 и h =

По заданной предельной абсолютной погрешности e начальный шаг вычислений h устанавливают с помощью неравенства h2 < .

Метод Эйлера - Коши

Для вычисления значений функции у= у (х) применяют формулу:

(2)

где , , ,

По заданной предельной погрешности начальный шаг вычислений h устанавливается с помощью неравенства h3 < .

Метод Руге - Кутта

Значения искомой функции у= у (х) на отрезке [x0, X] последовательно находят по формулам:

ук+] = yk + yk, k = 0, l, 2,...n – l (3)

где yk = (),

,

,

, , h =

По заданной предельной абсолютной погрешности начальный шаг вычислений h устанавливают с помощью неравенства h4 < .

Правило Рунге - Ромберга

Пусть и - значения искомой функции, полученные одним из указанных методов при шагах вычисления h и 2h соответственно, а - заданная абсолютная предельная погрешность. Тогда считается, что достигнута заданная точность вычислений, если выполняется неравенство:

(4)

при всех k и при s = 2,3,4 соответственно для методов Эйлера, Эйлера - Коши, Рунге - Кутта. Решением задачи является функция .

Применяя указанное правило, последовательно вычисляют значения искомой функции с шагом 2h и с шагом h и сравнивают полученные результаты по формуле (4). Вычисления заканчивают, когда неравенство (4) выполняется при всех k.





Поделиться с друзьями:


Дата добавления: 2016-12-06; Мы поможем в написании ваших работ!; просмотров: 519 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Ваше время ограничено, не тратьте его, живя чужой жизнью © Стив Джобс
==> читать все изречения...

2220 - | 2164 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.011 с.