Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Результаты работы в Eureka.




Рекомендации по решению задачи:

1. Решить задачу, используя ППП Eureka.

2. Исходя из полученного решения, выбрать границы существования корня.

3. Составить блок – схему решения и программу на QBasic.

Контрольные вопросы
«Уточнение корня уравнения»

1. В чем заключается геометрический смысл метода половинного деления?

2. Какой оператор цикла используется в процедуре дихотомии?

3. Какими свойствами должна обладать функция F(x), чтобы методом половинного деления можно было гарантировать решение уравнения F(x)?

4. Что необходимо для нахождения хотя ы одного действительного корня уравнения F(x) методом половинного деления?

5. Какие процедуры функции используются в программе?

6. Какой функцией заменяется левая часть уравнения F(x)=0 в методе итерации?

7. Что называется сходимостью метода итерации?

8. Каково условие сходимости метода итерации и как это условие проверяется в программе?

9. В чем заключается геометрическая интерпретация метода Ньютона?

10. Исходя из чего выбирается в методе Ньютона первое приближение Х0

11. Для чего в программе предусмотрена процедура-функции для второй производной от исходной функции?

Варианты заданий для самостоятельного решения

Задание.

1. Уточнить корень уравнения, используя следующие методы:

- метод половинного деления;

- метод простой итерации;

- метод касательных (Ньютона).

2. Для вариантов заданий, представленных в таблице 4, выбрать точность вычисления.

3. Для вариантов заданий, представленных в таблице 6, вычислить корень с заданной точностью.

4. Для вариантов заданий, представленных в таблице 7,8,9, установить границы существования корня, точность вычисления, установить границы существования корня.

 

Таблица заданий № 4.

П\П Вид уравнения Начальное приближение корня
1. x – sin 2x – 1 = 0  
2. 2x ^ 3 + 4x – 1 = 0 0.1
3. x ^ 3 + 12x – 2 = 0 0.95
4. 5 – x – 8lnx = 8 4.32
5. x ^ 3 + x = 1000 9.42
6. x – sin x = 0.25 1.17
7. x ^ 3 – 6x ^ 2 + 20 = 0 2.25
8. 5x ^ 3 + 10x ^ 2 + 5x – 1 = 0 0.6
9. 3sin +0.34x-3.8 =0  
10. x – 3 + sin (3.6x) = 0  
11. arcos(x)- = 0  
12. √1- 0.4x ^ 2 – arcsin x = 0  
13. x – 2 + sin x = 0 1.2
14. 1 – x + sin x – ln (1 + x) = 0  
15. x ^ 2 – ln (1 + x) – 3 = 0  
16. x ^ 3 + x ^ 2 – 3 = 0 0.6
17. x ^ 3 – x – 0.2 = 0 0.9
18. 5x ^ 3 – x – 1 = 0 0.6
19. x ^ 3 – 2x – 5 = 0 1.9
20. x ^ 3 + x = 1000 9.1
21. x ^ 4 + 2x ^ 3 – x – 1 = 0  
22. x ^ 3 – x – 2 = 0 0.9
23. x – sin x/2 – 1 = 0  
24. 2 ^ 3 + 4x – 1 = 0 0.1
25. x ^ 3 + 12x – 2 = 0 0.95

 

Таблица заданий № 5

П\П Вид уравнения Отрезок
1. 0.25x ^ 3 + x – 1.2502 = 0 0, 2
2. 0.1x ^ 2 – xlnx = 0 1, 2
3. 3x – 4lnx – 5 = 0 2, 4
4. e ^ x – e ^ -x – 2 = 0 0, 1
5. e ^ x + lnx – 10x = 0 3, 4
6. 3x – 14 + e ^ x – e ^ -x = 0 1, 3
7. 3ln ^ 2x + 6lnx– 5 = 0 1, 3
8. 2xsinx – cosx = 0 0.4, 1
9. xtgx – 1\3 = 0 0.2, 1
10. √ 1 – x - cos√ 1 – x = 0 0, 1

 

Таблица заданий № 6

№ вар. Уравнение Интервал Точность
1. x – 1\ (2 + sin2x) = 0 [0; 1] 10 ־³
2. arcsin(x\3) - √ 1 – (x\3) ^ 2 = 0 [ 1,5; 3] 10 ־³
3. x - √ 9 –x+ x ^ 2 = 0 [1; 2] 10 ־³
4. √1 – x ^ 2 - arcsin x = 0 [0; 1] 10 ־³
5. tgx – (1/3)(tgx)^3 + (1/5)(tg x) ^ 5 – 1/3 = 0 [0; 0,8] 10 ־³
6. e ^ x – e (- x) – 2 = 0 [0; 1] 10 ־³
7. cosx – e(-(x ^ 2) / 2) + x – 1 = 0 [0; 2] 10 ־³
8. sin(x ^ 2) + cos(x ^ 2) – 10x = 0 [0; 1] 10 ־³
9. 3sin√x + 0,35x – 3,8 = 0 [2; 3] 10 ־³
10. √1 – 0,04 (x ^ 2) – x = 0 [0; 1] 10 ־³
11. 1/4(x ^ 3) + x – 1,25 = 0 [0; 1] 10 -5
12. x – sin(x + 2) = 0 [0; 1] 10 -5
13. √1 – x - cos√1 – x = 0 [0; 1] 10 ־³
14. 0,1(x ^ 2) – x lnx = 0 [1; 2] 10 ־³
15. 3x – 4 lnx – 5 = 0 [1;4] 10 ־³
16. e ^ x + lnx – 10 x = 0 [1; 4] 10 ־³
17. x tgx – 1/3 = 0 [0; 1] 10 ־³
18. 0,25(x ^ 3) + x – 1,25 = 0 [0; 2] 10 ־³
19. 3x – 14 + e ^ x + e (-x) = 0 [1; 3] 10 ־³
20. 2x sinx – cosx = 0 [0,4; 1] 10 ־³
21. 1/(1 + x ^ 2) – x = 0 [1; 2] 10 ־³
22. .(tg x) ^ 2 – x = 0 [1; 2] 10 ־³
23. x + ln(х + 0.5) - 0.5 = 0 [0;2] 10 ־³
24. x ^3 – х - 0.2 = 0 [1;1,1] 10 ־³
25. x^ 4 + 2х^ 3 – х – 1 = 0 [0; 1] 10 ־³
26. x ^ 3 – 0.2х^ 2 - 0.2х - 1.2 = 0 [1;1,5] 10 ־³
27. 2sin^2х/3 – Зсоs^2х/4 = 0 [0;П/2] 10־³
28. x ^ 4 + 0.8х ^ 3 - 0.4х ^ 2 - 1.4х - 1.2 = 0 [-1,2;-0,5] 10־³
29. x ^ 4 - 4.1х ^ 3 + х^ 2 - 5.1х + 4.1 = 0 [3,7;5] 10־³
30. х2 ^ х – 1 = 0 [0;1] 10־³

 

Таблица заданий № 7

№ вар Уравнение № вар Уравнение
1. x – sinx = 0,25 16. 16. tg(0,3x + 0,4) = x ^ 2
2. tg(0,58x + 0,1) = x ^ 217. 17. x ^ 2 – 20sinx = 0
3. √x – cos(0,387x) = 018. 18. ctgx – x/4 = 0
4. tg(0,4x + 0,4) = x ^ 2 19. 19. tg(0,47x + 0,20 = 0
5. lgx – 7/(2x + 6) = 020. 20. x ^ 2 + 4sinx = 0
6. tg(0,5x + 0,2) = x ^ 2 21. 21. ctgx – x/2 = 0
7. 3x – cosx – 1 = 022. 22. 2x – lgx – 7 = 0
8. x + lgx = 0,523. 23. tg(0,44x + 0,30 = 0
9. tg(0,5x + 0,1) = x ^ 2 24. 24. 3x – cosx – 1 = 0
10. x ^ 2 + 4sinx = 025. 25. ctgx – x/10 = 0
11. ctg1,05x – x ^ 2 = 026. 26. x ^ 2 + 4sinx = 0
12. tg(0,4x + 0,3) = x ^ 2 27. 27. tg(0,36x + 0,4) = 0
13. xlgx – 1,2 = 028. 28. x + lgx = 0,5
14. 1,8x ^ 2 – sin10x = 0 29. 29. ctgx – x/5 = 0
15. ctgx – x/4 = 030. 30. 2lgx – x/2 + 1 = 0

 

 

Таблица заданий № 8

№ вар Уравнение № вар Уравнение
1. x ^ 3 – 3x ^ 2 + 9x – 8 = 0.   x ^ 3 + 4x – 6 = 0
2. x ^ 3 – 6x – 8 = 0   x ^ 3 + 0,2x ^ 2 + 0,5x + 0,8 = 0
3. x ^ 3 – 3x ^ 2 + 6x + 3 = 0   x ^ 3 – 3x 62 + 12x – 12 = 0
4. x ^3 – 0,1x ^ 2 + 0,4x –1,5 = 0   x ^3 -0,2 x^2 + 0,3x + 1,2 = 0
5. x ^ 3 – 3x ^ 2 + 9x + 2= 0   x ^ 3 – 2x + 4 = 0
6. x ^ 2 + x – 5 = 0   x ^ 3 – 0,2x ^ 2 + 0,5x – 1,4 = 0
7. x ^ 3+ 0,2 x ^2 +0,5x –1,2 = 0   x ^ 3 – 3x ^ 2 + 6x – 5 = 0
8. x ^ 3 + 3x + 1 = 0   x ^ 3 – 0,1x ^ 2 + 0,4x + 1,2 = 0
9. x ^ 3 + 0,2x ^ 2 + 0,5x – 2 = 0   x ^ 3 – 0,2x ^ 2 + 0,5x – 1 = 0
10. x ^ 3 – 3x ^ 2 + 12x – 9 = 0   x ^ 3 + 3x ^ 2 + 12x + 3 = 0
11. x ^3 –0,2x ^ 2 + 0,3x – 1,2 = 0   x ^ 3 – 0,1x ^ 2 + 0,4x + 2 = 0
12. x ^ 3 – 3x ^ 2 + 6x – 2 = 0   x ^ 3 – 0,2 x ^ 2 + 0,4x – 1,4 = 0
13. x ^ 3 –0,1x ^ 2 +0,4x –1,5 = 0   x ^ 3 + 0,4x ^ 2 + 0,6x – 1,6 = 0
14. x ^ 3 + 3x ^ 2 + 6x – 1 = 0   x ^3 + x – 3 = 0
15. x ^ 3 +0,1x ^ 2+0,4x –1,2 = 0   x ^ 3 – 0,2x ^ 2 + 0,5x + 1,4 = 0

 

Таблица заданий № 9

№ вар Уравнение № вар Уравнение
1). 2x ^ 3 – 3x ^ 2 – 12x – 5 = 0   2x ^ 3 – 3x ^ 2 – 12x + 1 = 0
2). x ^ 3 – 3x ^ 2 – 24x – 3 = 0   x ^ 3 – 3x ^ 2 – 24x – 5 = 0
3). x ^ 3 – 3x ^ 2 + 3 = 0   x ^ 3 – 4x ^ 2 + 2 = 0
4). x ^ 3 – 12x + 6 = 0   x ^ 3 – 12x – 5 = 0
5). x ^ 3 + 3x ^ 2 – 24x – 10 = 0   x ^ 3 + 3x ^ 2 – 24x + 1 = 0
6). 2x ^ 3 – 3x ^ 2 – 12x + 10 = 0   2x 6 3 – 3x^ 2 – 12x + 12 = 0
7). 2x ^ 3 + 9x ^ 2 – 21 = 0   2x ^ 3 + 9x ^ 2 – 6 = 0
8). x ^ 3 – 3x ^ 2 + 2,5 = 0   x ^ 3 – 3x ^ 2 + 1,5 = 0
9). x ^ 3 + 3x ^ 2 – 2 = 0   x ^ 3 – 3x ^ 2 – 24x + 10 = 0
10). x ^ 3 + 3x ^ 2 – 3,5 = 0   x ^ 3 + 3x ^ 2 – 24x – 3 = 0
11). x ^ 3 + 3x ^ 2 – 24x + 10 = 0   x ^ 3 – 12x – 10 = 0
12). x ^ 3 – 3x ^ 2 – 24x – 8 = 0   2x ^ 3 + 9x ^ 2 – 4 = 0
13). 2x ^ 3 + 9x ^ 2 – 10 = 0   2x ^ 3 – 3x ^ 2 – 12x + 8 = 0
14). x^ 3 – 12x + 10 = 0   X ^ 3 + 3x ^ 2 – 1 = 0
15). x ^ 3 +3x ^ 2 – 3 = 0   x ^ 3 – 3x ^ 2 + 3,5 = 0

 

ЛАБОРАТОРНАЯ РАБОТА № 4
«Методы численного решения дифференциальных уравнений.
Уравнения 1-го порядка»

Цель работы

Ознакомление с принципом модульного программирования на примере задачи решения дифференциальных уравнений и использование оболочки QBasic для построения подпрограмм и головного модуля.

Порядок выполнения работы

1. Получить у преподавателя вариант задания, включающий в себя

· дифференциальное уравнение (F(x))

· интервал (а,b)

· шаг (h)

· краевое значение функции (у 0 )

 

2. Написать подпрограмму для каждого метода (Эйлера, Эйлера-Коши,
Рунге-Кутта)

3. Написать подпрограмму процедуры-функции

4. Написать головной модуль

5. Отладить программу и получить результаты

6. Построить график решений дифференциального уравнения для всех 3-х методов в Excel.

Содержание отчета

1. Содержательная постановка задачи

2. Исходные данные

3. Краткое описание методов

4. Блок схема подпрограмм и блок схема головного (или управляющего) модуля

5. Листинг подпрограмм и управляющего модуля

6. Распечатка полученных результатов

7. Распечатка результатов в Excel.

Теоретические сведения





Поделиться с друзьями:


Дата добавления: 2016-12-06; Мы поможем в написании ваших работ!; просмотров: 521 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Студент всегда отчаянный романтик! Хоть может сдать на двойку романтизм. © Эдуард А. Асадов
==> читать все изречения...

2431 - | 2176 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.012 с.