Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Рафинирования в сталеплавильных агрегатах




В современных условиях, когда в огромных объемах производится технический кислород (в одном обогатительном агрегате до 30000 м3 O 2/час и выше), металлурги в качестве окислительного реагента чаще всего используют газообразный кислород, который обычно подводят сверху одной или несколькими струями, а в некоторых новых процессах непосредственно в толщу обрабатываемого жидкого металла снизу, сбоку или тем или иным комбинированным способом. В зависимости от желаемой интенсивности продувки, скорость истечения кислорода из сопел фурм составляет от 200 до 650 м/с, т.е. струя может быть до- или сверхзвуковой. Эти скорости обеспечиваются при давлениях газа в кислородопроводе от 0,5 до 1,5 мПа.

В зависимости от скорости набегания кислородной струи на поверхность металла (т.е., при постоянной интенсивности продувки, от расстояния между поверхностью ванны и срезом сопла в калибрах, h / d) степень рассредоточения кислорода по поверхности ванны и геометрическая форма образующейся двухфазной области газ-металл, так называемой "реакционной зоны", бывают различны.

При больших интенсивностях продувки (i, м3 O 2/мин), например, при конвертерном процессе, наблюдается глубокое внедрение кислородной струи в толщу металла и раздробление последнего на огромное количество мельчайших капель с образованием так называемой "первичной реакционной зоны".

Многочисленные исследования на "холодных" и "горячих" лабораторных моделях и на полупромышленных конверторах и др. показали, что при интенсивной продувке металла кислородом образуется так называемая "первичная реакционная зона", представляющая собой объем газообразного кислорода, в котором взвешено огромное количество металлических капель диаметром от 0,1 до 3,5 мм. В различных участках реакционной зоны количество и вес этих капель различны (300-500 кг/м2 сек) и движутся они в объеме кислорода со скоростями до 20 м/с. Металлические капли во время своего полета окисляются с поверхности и частично или полностью сгорают. Поэтому температура в объеме "первичной реакционной зоны" и на охватывающей ее разрыхленной металлической поверхности составляет 2000-2300 °С.

Некоторая часть кислорода внедряется в толщу металла и совместно с газообразными и жидкими продуктами окисления металла образует так называемую "вторичную реакционную зону".

В подовых сталеплавильных агрегатах, при незначительных интенсивностях продувки реакционная зона либо очень незначительно заглублена, либо имеет форму поверхностной открытой лунки. Однако, по результатам многих исследований, и в этом случае интенсивность окислительных реакций в районе реакционной зоны во много раз выше, чем во всех остальных участках металлической ванны.

Таким образом, при использовании газообразного кислорода внешним звеном окислительных реакций является главным образом массоперенос в газовой фазе к поверхности расплавленного металла. В определенных условиях он может быть ведущим или лимитирующий звеном. Хотя многочисленные исследования показали, что ведущую роль в окислительных процессах во всех случаях играют процессы, протекающие в реакционной зоне, оценить их интенсивность количественно и увязать с величиной удельной поверхности раздела фаз металл-газ, и интенсивностью перемешивания металла во вторичной реакционной зоне, а также с интенсивностью переноса примесей металла во всем его объеме и с их поступлением во вторичную реакционную зону пока не удается. Это является одной из основных задач не только металлургов, но также газо- и гидромехаников и специалистов в области химического машиностроения.

Далеко не во всех промышленных процессах производства стали окислительное рафинирование играет ведущую роль. В зависимости от состава шихты и тепловых возможностей подовых сталеплавильных агрегатов металлу, иногда, необходимо передать относительно небольшие или совсем малые количества кислорода. Поэтому определенную роль продолжает играть использование для окислительных процессов расплавленных и твердых носителей кислорода. Передача к металлу кислорода от железистых шлаков и в особенности от плавящейся руды требует значительных энергетических затрат. Кроме того, для этого необходимо обеспечить развитую межфазную поверхность шлак-металл, или добавляемая руда-металл. В условиях подовых агрегатов это технически в настоящее время не всегда возможно обеспечить. Поэтому интенсивность окисления через шлак или от руды несравненно ниже, чем при использовании газообразного кислорода (на 2-3 порядка)

В этом случае ведущим этапом процесса окисления всегда является внутридиффузионное звено, т.е. перенос активного по отношению к примесям металлического расплава кислорода в объеме твердого окисла или жидкого шлака. Перенос кислорода в этих фазах весьма затруднен их высокой вязкостью и низким значением коэффициента массопереноса. Вязкость металла, форма существования его примесей и т.д. в этих случаях обычно мало сказываются на кинетике такого рода окислительного процесса и чаще всего экспериментально не обнаруживаются. Таким образом, для изучения природы самих процессов окисления, происходящих в жидком металле, наиболее удобно исследовать процессы взаимодействия именно окислительных газов и расплавленного металла. В этом случае наиболее перспективны методы "висящей капли" и "падающей капли".

 





Поделиться с друзьями:


Дата добавления: 2016-12-05; Мы поможем в написании ваших работ!; просмотров: 326 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Есть только один способ избежать критики: ничего не делайте, ничего не говорите и будьте никем. © Аристотель
==> читать все изречения...

2206 - | 2162 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.006 с.