Тахистоскоп (от лат. tachistos — быстрый, скорый и skopo — смотрю) представляет прибор, позволяющий предъявлять зрительные стимулы на строго определенное, в том числе очень короткое время. Тахистоскопы обеспечивают:
• предъявление предварительного «дежурного» фона или объекта, к которому адаптируется зрительная система;
• кратковременную экспозицию тестового объекта в течение заданного времени;
• повторное предъявление «дежурного» или «стирающего» объекта (фона) сразу после экспозиции;
• регистрацию времени какой-либо реакции (речевой, моторной и т. п.).
Существуют две группы тахистоскопов:
• обеспечивающие экспозицию «натурального» объекта (пульта, прибора, схемы, информационного поля и т. п.);
• обеспечивающие экспозицию проекционного изображения.
Исторически первыми были механические тахистоскопы, в которых время регулировалось с помощью механического затвора.
В настоящее время широко применяются также электронные тахистоскопы, работающие по принципу электронной модуляции уровня освещенности. Среди них для тахистоскопического предъявления информации все чаще используются индикаторы и дисплеи, управляемые ЭВМ. Весьма эффективным является также применение телевизионных тахистоскопов, изготавливаемых на базе промышленных телевизионных установок. К их преимуществам относится возможность работы при малой освещенности (до 0,1 лк) и возможность изоляции испытуемого от помех.
Для проведения коллективных экспериментов применяются проекционные тахистоскопы, представляющие собой специально оборудованные диапроекторы. Тахистоскопы различаются также количеством независимо работающих каналов предъявления информации. Тахистоскопы находят широкое применение в исследованиях восприятия, опознания, памяти и других познавательных процессов [173].
Рефлексометром называется прибор, предназначенный для измерения времени выполнения оператором тех или иных действий. В отличие от механических времяизмерительных устройств (например, секундомеров, часов) рефлексометр автоматически запускается в момент предъявления сигнала (команды) к началу действия и выключается после выполнения обусловленного действия оператором. Для осуществления этого в каждом конкретном случае индивидуально разрабатывается и изготавливается простейший блок управления на базе бесконтактных или электромагнитных реле. Структурная схема такого прибора приведена на рис. 10.1. При необходимости ведения исследования в быстром темпе к блоку управления может быть подключено автоматическое програмное устройство (АПУ), а результаты через транскриптор выведены на цифропечать.
Рис. 10.1. Структурная схема рефлексометра.
Адаптометр (от лат. adapte — приспособляю и metron — мера) служит для измерения световой чувствительности глаза в процессе темновой адаптации, то есть в процессе постепенного привыкания глаза к темноте. Адаптрон построен на принципе измерения порога светового раздражения зрительного анализатора путем предъявления точно дозированных световых воздействий. Прибор позволяет установить минимальную интенсивность светового раздражителя, вызывающую у испытуемого ощущение света при данных условиях. Яркость тестового объекта может меняться в очень большом диапазоне, что позволяет исследовать изменение чувствительности и, следовательно, ход темновой адаптации как нормального глаза, так и при глазной патологии.
Аудиометр (от лат. audio — слышу и греч. metron — мера) представляет специальный электроакустический прибор для исследования слуха. Сам процесс исследования называется аудиометрией. По сравнению с другими методами исследования слуха (речью, камертонами, свистками и др.) аудиометрия имеет ряд преимуществ: позволяет дозировать интенсивность звуковых сигналов в общепринятых единицах — децибелах, производить исследование почти всех звуковых частот, воспринимаемых человеком, и осуществлять ряд функциональных проб (исследование пороговой дифференциальной чувствительности, интенсивности, маскировки и т.п.). Аудиометрия позволяет довольно точно охарактеризовать функциональное состояние слухового аппарата, а отчасти, и его функциональные возможности. Аудиометрию проводят в звукоизолированных камерах; результаты заносят на специальные бланки — аудиограммы. В зависимости от подаваемого сигнала и метода регистрации различают тональную, шумовую, автоматическую и рефлекторную аудиометрию [148].
Эргометры и эргографы (от греч ergon — работа и grappho — пишу) используются для изучения работы мышц человека, определения величины мышечной работоспособности, регистрации движений рук и ног человека. Графическая запись результатов исследования с помощью этих приборов называется эргограммой. С ее помощью определяю величину и мощность проделанной работы. Особенности эргограммы зависят от величины груза, быстроты ритма и состояния нервной системы работающего.
Определение моторных характеристик осуществляется также с помощью таких приборов, как кинема-тометр, тремометр, координометр. Кинематометр позволяет определить чувствительность кинестетического анализатора человека (ощущение положения руки в пространстве). Тремометр применяется для оценки точности движений. Координометры обеспечивают измерение координации движений рук. Простейшей моделью координометра является суппорт от токарного станка. Испытуемый, оперируя одновременно или по очереди двумя рукоятками, перемешает ствол суппорта, на котором заложена пластина с фигурной щелью (траекторией), так чтобы неподвижный штифт не касался ее краев. Оцениваются те же параметры, что и в тремометре [173]. Для изучения групповой деятельности применяются приборы типа гомеостат и кибернометр.
Полиграф представляет прибор, предназначенный для одновременной регистрации и анализа нескольких физиологических характеристик человека. Его применение позволяет реализовать на практике полиэффекторную методику исследования функционального состояния оператора. В результате оказывается возможным судить об особенностях изучаемой деятельности, установить корреляции между характером внешних сигналов и ответными реакциями на них. Преимуществом полиграфа является и то, что с его помощью создается возможность разграничить те сложные функциональные системы, в которые регистрируемая частная реакция входит в качестве одного из компонентов. На принципе полиграфа построен такой широко известный прибор, каким является детектор лжи (148].
Рассмотренные приборы (а их перечень можно было бы продолжить) выпускаются, как правило, серийно и находят широкое применение в инженерно-психологических исследованиях. Однако они далеко не полностью удовлетворяют потребностям практики, поэтому помимо них возможно применение несерийной аппаратуры, которую условно можно разделить на две группы.
К первой группе относятся схемные решения и способы исследований, защищенные авторскими свидетельствами на изобретателя. Их отличительная черта — элемент новизны по сравнению с ранее существующими устройствами и способами. В зависимости от целей изобретения авторские свидетельства на устройства и способы изучения и анализа деятельности оператора можно, в свою очередь, разделить на две группы. В первой из них целью изобретения является совершенствование схемных решений (упрощение схемы, повышение эксплуатационных и технических характеристик ее работы и т. п.) по сравнению с ранее существующими вариантами. Инженерно-психологические аспекты в этих авторских свидетельствах практически не отличаются от ранее существующих решений. Целью авторских свидетельств второй группы является расширение функциональных возможностей предлагаемых устройств по сравнению с прототипами (применение новых методов регистрации психофизиологических данных, контроля уровня подготовки операторов, организации тренировок и т. п.). Элемент новизны носит здесь прежде всего инженерно-психологический аспект. Применение таких устройств и способов позволяет реализовать на практике новые инженерно-психологические принципы и рекомендации. Авторские свидетельства этого класса можно разделить на следующие виды: устройства и способы изучения психофизиологических характеристик человека, устройства для обучения и тренировок операторов, устройство контроля работоспособности и состояния операторов, способы и устройства анализа речевых сигналов [173].
Ко второй группе принадлежат приборы единичного (мелкогруппового) изготовления. Многие из них не имеют элементов новизны в схемных решениях, поэтому не являются изобретениями. Однако в отличие от большинства приборов первой группы (авторских свидетельств) каждый из приборов второй группы реально изготовлен в одном или нескольких экземплярах и был применен при проведении тех или иных исследований. Описанию аппаратурно-экспериментальных методик проведения инженерно-психологических исследований посвящен целый ряд работ. Однако их анализ показывает, что наибольшее внимание уделяется разработке приборов узкого назначения, предназначенных для исследования отдельных закономерностей деятельности оператора: влияния различных факторов на его надежность [24, 192], закономерностей процесса слежения [40, 108, 109, 111, 201], возможности оценки функционального состояния оператора психологическими и физиологическими методами [96, 108, 109, 112, 188], отдельных сторон групповой деятельности [32,54, 125], изучения закономерностей процесса принятия решения оператором [27,87,150] и др.
Ряд приборов и устройств предназначен для комплексного изучения и моделирования в лабораторных условиях целостной деятельности оператора как сравнительно простой (например, экскаваторщика [8]), так и более сложной в психологическом плане (имитационные комплексы «Уникод» [173] и «Оператор» [139] для моделирования деятельности оператора АСУТП). В практике проектирования СЧМ находят применение шаблоны и макеты для отработки конструкции рабочего места и стенды для динамического макетирования лицевых панелей пультов управления [10].
В качестве примера более подробно остановимся на двух конкретных аппаратурных разработках, нашедших широкое применение в инженерно-психологической практике. Одной из них является прибор АГИП (аппарат группового исследования психомоторики). Он позволяет одновременно обследовать группу до 24 человек; при этом можно измерять параметры следующих психомоторных процессов: сенсомоторных реакций, выполняемых одной или двумя руками; сенсомоторной координации, осуществляемой в условиях визуальных помех; сенсомоторной координации, осуществляемой при повышенном темпе предъявления сигналов (дефицит времени).
Прибор состоит из следующих составных частей: пульта управления экспериментом (ПУЭ) с программным устройством, пульта обследуемого (ПО), светового табло (СТ) со светосигнальными полями зрительных сигналов (рис. 10.2). На пульте управления расположены тумблеры для включения помех, переключения скорости прохождения программы, переключения режима работы (ручной или автоматический), избирательного включения ламп на световом табло. Световое табло служит для отображения световых сигналов, посылаемых с ПУЭ вручную или автоматически. На СТ расположено 26 сигнальных ламп, светящихся разным цветом. Поле СТ поделено пополам: справа и слева находится по 13 сигнальных ламп, реагировать на которые необходимо соответственно правой или левой рукой. Лампы в каждой половине размещены в определенном порядке с таким расчетом, чтобы задавать направления движений рук. Красные лампы (4) указывают направления движения рычагов ПО; зеленые (5) являются сигналом для возвращения рычагов ПО в исходное состояние; белые (6) служат для создания зрительных помех. Пульты обследуемых (24 штуки) содержат рычаги (3) для воспроизведения движений руки, счетчик (2) для фиксации времени реакции обследуемого и 16 клемм (4) по восемь штук вокруг каждого рычага, расположенных в соответствии с размещением сигналов на обеих половинах СТ. Задача оператора заключается в определенной манипуляции рычагами в соответствии с заданной инструкцией [214].
Рис. 10.2. Аппарат группового исследования психомоторики: а — световое табло; б — пульт оператора.
Другим примером аппаратурной методики исследования деятельности оператора является ДПФИ (дистанционный прибор для физиологических исследований). Прибор предназначен для измерения характеристик зрительного, слухового и двигательного анализаторов, а также основных характеристик, определяющих состояние организма человека. К ним относятся: время простой сенсомоторной реакции на звуковой (частотой 1000 Гц) и световой раздражитель; время сложной реакции на комплекс световых сигналов; чувствительность и подвижность зрительного анализатора по критической частоте слияния мельканий (КЧСМ) и порогу возникновения ощущения света (фосфена), а также критической частоте исчезновения мелькающего фосфена (КЧИФ) при электрическом раздражении зрительного анализатора; статическая и динамическая (скорость простых движений — темпинг-тест) мышечная выносливость; скорость и точность координированных движений; частота и амплитуда тремора (мелких колебаний расслабленных мышц); электрическое сопротивление кожи.
Конструктивно прибор выполнен в виде двух частей: пульта экспериментатора и пульта испытуемого. С пульта экспериментатора подаются команды и сигналы на пульт испытуемого для контроля ответных реакций. Измерение характеристик из перечня заложенных в приборе методик может производиться в любой последовательности. Для достижения связи экспериментатора с испытуемым пульты, разнесенные на расстояние до 50 м, соединяются электрическим кабелем. Это позволяет избежать субъективного влияния присутствия экспериментатора на процесс исследования, размещать испытуемого на реальном рабочем месте (в кабине, отсеке, аппаратном помещении, у пульта управления и т. п.) и измерять характеристики человека в кратковременных перерывах деятельности даже в реальных условиях труда [184, 199].
Все рассматриваемые до сих пор приборы позволяют решать лишь определенный, достаточно узкий класс задач инженерно-психологического анализа деятельности оператора. Помимо этого делаются попытки создания универсальных приборов, Построенных на базе динамических (функциональных) макетов рабочего места оператора, моделирующих прежде всего информационные потоки, поступающие к оператору. Анализ и оптимизация деятельности проводится с их помощью на основе максимизации функции качества при ограничениях, накладываемых на инженерно-психологический характеристики рабочего места.
В таком динамическом макете лицевую панель исследуемого рабочего места набирают на специальной моделирующей установке (рис. 10.3) с соблюдением геометрических размеров, компоновки и алгоритма трудовой деятельности. Установка снабжается логико-временным блоком 1, блоком питания 2 и набором быстросъемных соединений для подключения этих блоков к съемным элементам, установленным в ячейках монтажной платы 6. Съемные элементы 4 выполнены в виде единичных модулей с органами индикации и управления.
Рис. 10.3. Установка для динамического макетирования операторской деятельности.
Макетирование выполняют следующим образом. На монтажной плате 6, прикрепленной к каркасу, набирают лицевую панель исследуемого пульта управления путем установки единичных модулей в установленные ячейки 3 монтажной платы. Незанятые ячейки закрываются фальшпанелями 5, имитирующими окрашенную поверхность пульта. С помощью быстросъемных соединений единичные модули коммутируются между собой в соответствии с алгоритмом работы, а также подключаются к элементам логико-временного блока 1, который осуществляет требуемую логическую связь и позволяет реализовать требуемые временные задержки. На полученном макете в реальных условиях рабочей среды моделируют все конкурирующие варианты компоновки пульта управления, а, следовательно, и алгоритма работы оператора и для каждого из них определяют функцию качества. Из нескольких сравниваемых вариантов выбирают тот, для которого функция качества принимает максимальное значение [10].
В заключение следует отметить, что в последнее время наблюдается все более возрастающая тенденция автоматизации инженерно-психологических исследований. В этих целях разрабатываются и совершенствуются устройства ввода в ЭВМ и вывода из нее психофизиологической информации, а также устройства для автоматизированной обработки результатов эксперимента [27, 74, 109, 127]. Эти вопросы требуют специального рассмотрения.
10.2. Применение ЭВМ и автоматизация инженерно-психологических исследований
Эффективное решение многих задач инженерно-психологического исследования возможно лишь на основе полной или частичной их автоматизации, применения ЭВМ при проведении таких исследований. Только на таком пути, как отмечается в [55], возможен переход к «индустриализации» и унификации методов исследования с широким использованием количественных оценок, что, в свою очередь позволит повысить достоверность и сопоставимость результатов различных работ.
Применение ЭВМ в инженерно-психологических исследованиях осуществляется по следующим, основным направлениям [126, 146], показанным на рис. 10.4.
Рис. 10.4. Возможные области применения ЭВМ в инженерно-психологических исследованиях.
1. Обработка результатов инженерно-психологических исследований. Это освобождает исследователя от рутинного, непроизводительного труда по выполнению расчетов и вычислений. Кроме того, машинная обработка позволяет использовать при анализе полученных результатов более мощный, информативный математический аппарат (множественная регрессия, факторный анализ и т. п.). Без ЭВМ такой анализ зачастую провести невозможно из-за недопустимо больших затрат времени на ручную обработку данных. Обработка результатов может носить автоматизированный (изучаемые показатели деятельности и состояния оператора автоматически, без участия исследователя вводятся в ЭВМ) либо неавтоматизированный (эти показатели непосредственно или с помощью приборов фиксируются исследователем и затем вручную вводятся в ЭВМ для обработки) характер. Такое применение ЭВМ является традиционным и наиболее распространенным.
2. Генерирование психологических задач. В этом случае ЭВМ входит в состав исследовательского комплекса и по определенной программе дает задания испытуемому (например, подает необходимые сигналы). Исследование может носить управляемый (адаптивный) или неуправляемый характер. В первом случае ЭВМ автоматически или по указанию экспериментатора меняет режим работы испытуемого в зависимости от результатов его работы и изменения его функционального состояния. Во втором случае ЭВМ работает по жесткой и неизменяемой в процессе исследования программе. Такое применение ЭВМ наиболее эффективно, когда оно входит в состав стенда для комплексного исследования операторской деятельности (рис. 6.2).
3. Имитация (моделирование) деятельности оператора. В этом случае ЭВМ по определенной программе имитирует деятельность оператора. Имитация может носить детерминированный или стохастический характер. В первом случае строится гипотетическая модель, описывающая поведение человека, например, с помощью системы дифференциальных уравнений. Тогда, используя ЭВМ, можно проверить гипотезу, откорректировать ее и рассмотреть поведение объекта в различных, в том числе и в экстремальных условиях. Стохастическая имитация основана на розыгрыше воздействия случайных факторов на поведение оператора непосредственно в ходе моделирования. При этом каждая реализация моделируемого процесса носит случайный характер. Методы такой имитации рассмотрены в главе IX.
4. Создание справочной информационно-поисковой системы инженерно-психологических данных. Идея такой системы состоит в том, что накапливаемый справочный материал концентрируется в памяти ЭВМ, а доступ к нему и поиск необходимых сведений организуется так, что любому исследователю в достаточно короткий срок могут быть выданы все интересующие его данные, накопленные ко времени запроса. Дальнейшим развитием применения ЭВМ в этом направлении является создание банка инженерно-психологических данных.
Такой банк данных представляет совокупность технических, программных, информационных и организационных средств, обеспечивающих накопление, хранение и выдачу по запросу индивидуального пользователя необходимой ему эргономической и инженерно-психологической информации, хранящейся в базе данных. Современные банки данных строятся с использование новейших технических средств (супер мини-ЭВМ, персональные компьютеры, автоматизированные рабочие места пользователей, аппаратура и каналы передачи данных) и программного обеспечения (системы управления базами данных, средства интеллектуального интерфейса, комплексы программных модулей, позволяющие создавать проблемно-ориентированные автоматизированные рабочие места пользователей).
Большое значение имеет организационное обеспечение банка данных, в том числе: организация системы сбора, обработки, обновления, обмена и тиражирования собираемой информации; координация исследований, проводимых в различных отраслях; расширение круга пользователей банка данных.
Применение банка данных позволяет повысить производительность труда проектировщиков систем «человек-машина», снизить затраты на проведение инженерно-психологических исследований, повысить качество проектируемых изделий, улучшить их эксплуатационные свойства [166].
Важнейшей составной частью банка данных является его информационная база (база данных). Она представляет совокупность сведений, хранимых в запоминающих устройствах ЭВМ. Эта совокупность выступает в качестве исходных данных задач, решаемых в процессе функционирования СЧМ, систем обработки данных, информационных и вычислительных систем. Главной целью создания базы данных является обобществление функций обновления, ведения и пополнения хранимой информации, а также справочной функции. База данных в этих системах является одним из основных структурных компонентов и предназначена для информационного обеспечения задач, решаемых в условиях коллективного пользования хранимой информации.
Основным характерным свойством базы данных является ее независимость от рабочих программ, с которыми она взаимодействует. Эта независимость проявляется в возможности изменения содержания, объема и организации хранимой информации без последующей модификации рабочих программ, пользующихся этой информацией.
В общем случае структура базы данных представляет собой совокупность взаимосвязанных массивов (файлов). Доступ к ним осуществляется при помощи имен и идентификаторов, присваиваемых пользователями или операторами во время определения базы данных [216].
База данных по инженерной психологии и эргономике может иметь следующие массивы:
• характеристики человека (психологические, физиологические, антропометрические, характеристики надежности, своевременности, уровня подготовленности и т. п.);
• условия труда (характеристики технических средств, рабочего места, среды, средств обеспечения коллективной деятельности и др.);
• рабочее задание (характеристики технологии производства, организации труда, безопасности труда и др.);
• процедуры (инженерно-психологические измерения, испытания, проектирование, моделирование, обработка результатов исследований и т. д.);
• эргономическое и инженерно-психологическое обеспечение (инженерно-психологические требования, типовые программы, оценка затрат и эффекта и др.);
• инженерная психология как наука (термины и определения, методы, научные школы, смежные науки);
• нормативно-методические документы (международные и национальные стандарты, утвержденные методики, аббревиатура и условные обозначения, методические документы);
• библиография (монографии, учебники и учебные пособия, статьи, научно-технические отчеты, патенты и изобретения) (35].
Важное значение для повышения эффективности инженерно-психологических исследований имеет их автоматизация. Под ней понимается применение автоматических устройств (и прежде всего ЭВМ) для решения задач экспериментального исследования. К числу таких задач прежде всего относится: планирование (в соответствии с замыслом экспериментатора) и определение нужной стратегии ведения эксперимента, выдача стимульного материала, управление (в том числе и адаптивное) ходом проведения эксперимента, сбор и обработка данных в темпе их поступления (в реальном масштабе времени), интерпретация полученных данных и выдача необходимых рекомендаций. Автоматизация обеспечивает повышение достоверности результатов исследований вследствие сохранения неизменными контролируемых условий эксперимента (пространственно-временные параметры стимуляции) для всех испытуемых, легкую воспроизводимость уже проведенного эксперимента, оперативное получение обработанных результатов, малые организационные затраты для увеличения числа исследуемого контингента, легкую приспособляемость контролируемых условий к индивидуальным различиям испытуемых, сокращение времени проведения отдельных опытов, минимизацию нежелательных побочных эффектов (вынужденные паузы и пр.), минимизацию влияния и ошибочных действий экспериментатора.
Важно также то, что автоматизация позволяет провести исследования в направлениях, фактически недоступных для широкого исследования без применения ЭВМ в качестве средства управления экспериментом.
Сюда относятся все приемы точного временного дозирования предъявляемой информации, осуществление адаптивного эксперимента, управление экспериментами по исследованию сложной сенсомоторной деятельностью, включающими в себя регистрацию движений или положения тела, конечностей, головы и глазных яблок, представление сложных синтезированных изображений (например, из случайно расположенных точек), исследование и применение метода моделирования конкретных психических функций. Полная автоматизация проведения основных этапов эксперимента, значительное расширение области используемых экспериментальных условий (качественное разнообразие и неограниченный объем стимульного материала, достаточно широкий диапазон варьирования режимов предъявления информации и т. д.), возможность использования оптимальных стратегий проведения исследования на основе адекватных математических приемов планирования эксперимента и разработки программ адаптивного типа существенно улучшают качество проводимых инженерно-психологических исследований.
Проведение автоматизированного психологического исследования предполагает решение целого ряда организационных задач. Здесь необходимо решить, какую ЭВМ использовать, какие построить интерфейсы, какие применить языки и системы программирования, как организовать передачу данных, какие при этом использовать методы сжатия информации и т. п. Одним из наиболее важных вопросов является выбор технических средств автоматизации. К ним относятся:
• лабораторные вычислительные средства управления, сбора и обработки информации;
• средства стыковки экспериментального оборудования;
• экспериментальная аппаратура, т. е. средства стимуляции и датчики. В случае применения иерархической системы управления к перечисленным средствам нужно добавить каналы передачи данных.
В заключение необходимо отметить, что автоматизация нисколько не умаляет роли экспериментатора. Нужно помнить, что средства автоматизации (в том числе и современные ЭВМ) работают только в рамках, определенных им человеком. Успех в решении той или иной проблемы зависит от уровня сформированных гипотез, грамотного определения стратегии проведения исследования, поставленных задач и намеченных целей, степени разработанности применяемых моделей. Качество решения этих задач не столько определяется возможностями техники, сколько зависит от опыта, интуиции и знаний экспериментатора.
10.3. Теоретические основы психологических измерений
Проведение инженерно-психологических исследований связано, как правило, с выполнением тех или иных измерений. Наука о психологических измерениях называется психометрией (психометрикой). Первоначально под ней понималось измерение временных характеристик психических процессов. В настоящее время в психометрию включают весь круг вопросов, связанных с любым измерением в психологии. Важнейшим признаком психологических измерительных процедур является их стандартизированность, предполагающая проведение исследований при возможно более постоянных внешних условиях.
Измерения, проводимые в инженерной психологии, условно можно разбить на два основных вида: физические и психологические. Несмотря на то, что проблема измерения является более или менее общей для всех наук, в психологии она проявляется более наглядно. Если в физике взаимодействие исследователя и предмета измерения опосредовано измерительным прибором, то в психологии таким «прибором» является вся организация психологического исследования. Важнейшей частью такого «измерительного прибора» является человек (испытуемый). Его психикой отражаются внешние стимулы, и задача психологического измерения состоит в том, чтобы получить количественные соотношения между этими психическими образами. Предметом психологического измерения можно считать часть «образа мира» (результата индивидуального психического отражения действительности), актуализированную набором стимулов (или ситуаций исследования), согласно предложенному критерию оценки (инструкцией испытуемому) [145].
На основании полученных данных строятся различные шкалы индивидуальных свойств и делаются выводы о надежности и валидности конкретной методики (подробно об этом сказано в главе VI). В последние годы наметилась тенденция создания психометрических процедур и моделей, позволяющих учитывать как переменные ситуации, так и индивидуальные особенности испытуемых [145]. Для этого используются две принципиально различных разновидностей шкал: шкала оценок и шкала установок.
Шкалой в общем случае называется последовательность чисел, служащих для количественной оценки каких-либо величин; она является инструментом для измерения количественных свойств объекта. В психологии различные шкалы используются для изучения различных характеристик психологических явлений (процессов, свойств, состояний). Построив шкалу, необходимо установить ее тип. Он определяется допустимым преобразованием элементов шкалы, которые не изменяют ее структуру. Выделяют четыре типа числовых шкал: номинальная (шкала наименований), ординальная, или порядковая (шкала порядка), интервальная (шкала интервалов), пропорциональная (шкала отношений). Их разделение осуществляется на основе тех математических преобразований, которые допускаются каждой шкалой.
Различие уровней измерения какого-либо качества можно проиллюстрировать таким примером. Допустим нам нужно каким-либо образом оценить степень удовлетворенности людей своей работой. Если разделить людей только на удовлетворенных или неудовлетворенных своей работой, то тем самым получим номинальную шкалу. Если можно также установить степень удовлетворенности, то строится ординальная шкала. Если фиксируется на сколько и во сколько разг удовлетворенность одних больше удовлетворенности других, то можно получить интервальную и пропорциональную шкалу. Эти два вида шкал называются метрическими, так как в них вводится единица измерения расстояний между объектами.
Тип шкалы определяет вид операций, которые можно применить к шкальным значениям. Применительно к номинальным шкалам недопустимы даже арифметические операции, хотя объекты в них могут выражаться числами (например, номер игрока в футбольной команде). В порядковых шкалах можно использовать непараметрические методы статистики, например, коэффициент порядковой ранговой корреляции Спирмена. В метрических шкалах допустимы статистические методы, в основе которых лежат вычисления средних значений. Помимо этого в интервальной шкале могут осуществляться арифметические операции сложения и вычитания, а в пропорциональной шкале — все арифметические операции. Покажем это на примере измерения температуры. В шкале Кельвина, являющейся пропорциональной шкалой (в ней фиксирована нулевая точка) допустимы преобразования типа у=ах, т. е. в ней можно сказать во сколько раз температура одного объекта больше или меньше температуры другого объекта. В отличие от этого в шкале Цельсия, являющейся интервальной шкалой (в ней нулевая точка не фиксирована), допустим преобразования вида у=ах+b, т. е. здесь можно только сказать на сколько температура одного объекта больше или меньше температуры другого объекта.
Рассмотрим теперь эти формальные положения теории измерений применительно к психологии. В теории измерений вводится понятие эмпирической системы с отношениями S, числовой системы с отношениями R и оператора g, который гомоморфно (от греч. gomos — общий и morfo — форма) отражает первую систему во вторую. Измерением называется тройка элементов (S, д, R), причем все они одинаково важны, пренебрежение любым из них делает измерение невозможным.
Эмпирическая система с отношениями S в этом случае есть множество психических образов с отношениями между ними как результат отражения множества стимулов с соответствующими отношениями. Формальное множество R (не обязательно числовое) — это результат психологического измерения, который получается применением выбранной психолого-математической процедуры к множеству «сырых оценок», полученных после эмпирического этапа психологического исследования.
Гомоморфизм g представляет оператор, устанавливающий однозначное соответствие между этими двумя множествами (и между элементами множеств, и между отношениями на этих множествах). При правильной организации процедуры исследования удается гомоморфно отразить психические образы в формальное множество, и по структуре последнего можно судить о структуре эмпирической системы (системы психических образов), в чем и заключается суть психологического измерения [145].
После рассмотрения основных формальных положений теории измерений следует хотя бы кратко остановиться на процедуре построения измерительных шкал.* Шкала является результатом шкалирования, под которым понимается метод моделирования реальных процессов с помощью числовых систем. Шкалирование является одним из важнейших средств математического анализа изучаемого явления, а также способом организации эмпирических данных, получаемых с помощью психологического исследования (наблюдения, изучения документов, опроса, эксперимента тестирования). Большинство психологических объектов не могут быть строго фиксированы относительно места и времени своего существования и поэтому не поддаются прямому измерению. Поэтому и возникает вопрос о специфике числовой системы, которая могла бы соотноситься с эмпирическими данными такого рода. Различные методы шкалирования и представляют собой особые приемы трансформации качественных характеристик в некоторую количественную переменную.
* Краткий психологический словарь /Под ред. А.В. Петровского, М.Г. Ярошевского. Ростов н/Д, 1998. С. 444—446.
Процесс шкалирования включает в себя два этапа. На первом этапе осуществляется сбор психологической информации, происходит создание эмпирической системы исследуемых объектов и фиксирование отношений между ними. На втором этапе производится анализ данных, от методов которого зависит объем информации, строится числовая система (шкала), отражающая отношения эмпирической системы объектов. Другими словами, на этом этапе осуществляется выбор и реализация метода шкалирования путем построения одного из четырех рассмотренных ранее типов шкал (наименований, порядка, интервалов, отношений).
Существует две принципиально различных разновидности задач, решаемых с помощью методов шкалирования:
• числовое отображение совокупности объектов с помощью их усредненной групповой оценки;
• числовое отображение внутренних характеристик индивидов посредством фиксации их отношения к какому-либо психологическому явлению. В первом случае отображение осуществляется с помощью шкалы оценок, во втором — с помощью шкалы установок.
Шкала оценок представляет собой методический прием, позволяющий распределить совокупность изучаемых объектов по степени выраженности общего для них свойства. Такое распределение основывается на субъективных оценках данного свойства, усредненных по группе экспертов (понятие об экспертных оценках дается в главе VI). Простейшим примером такой шкалы является обычная школьная система баллов. Шкала оценок имеет обычно от пяти до одиннадцати интервалов, которые могут быть обозначены числом либо сформулированы вербально (словесно). Большее число позиций выбирать не рекомендуется, поскольку психологические возможности человека (и прежде всего ограниченный объем его оперативной памяти и внимания) не позволяют производить классификацию объектов более чем по 11—13 позициям. К основным процедурам шкалирования в этом случае относятся парное сравнение объектов, отнесение их к определенным категориям, ранжирование и т. п.
Шкала установок позволяет сравнивать индивидов по величине, интенсивности и устойчивости их отношения к изучаемому явлению. В психологии шкала установок является одним из важнейших средств анализа, так как объектом измерения является здесь прежде всего личностные качества людей. Построение шкал установок связано с подбором таких суждений, которые отражают весь спектр возможных отношений субъекта к изучаемому явлению. Если по шкале оценок каждое суждение оценивается группой экспертов и получает свой усредненный балл, то в шкалу установок входят те суждения, которые имеют наиболее высокую оценку: обычно примерно из 300 суждений в готовую шкалу установок входит не более 25. С этими суждениями знакомят лиц, чьи установки предполагается изучить. Соответственно по тому, какие суждения выбирает индивид, ему присваивается суммарный балл, который и является его баллом по данной установке.
10.4. Методы регистрации и измерения показателей деятельности оператора
Измерения в процессе инженерно-психологического исследования и анализа деятельности оператора могут быть, как уже отмечалось, физическими и психологическими. Физическими методами определяются такие показатели, как время выполнения тех или иных действий, геометрические размеры оборудования, антропометрические характеристики, физические и химические факторы внешней среды, энерготраты оператора и др. Эти измерения проводятся с помощью специальных измерительных приборов, методы проведения таких измерений широко освещены в технической литературе. С помощью психологических методов измеряются показатели, недоступные прямому физическому измерению, например, психологические характеристики оператора, эргономические свойства продукции, некоторые субъективные характеристики сигналов (например, громкость и высота звука) и др. Измерительным инструментом в таких измерениях является вся процедура психологического исследования, включающая и самого исследователя или испытуемого.
Основными видами измерений в инженерной психологии являются: определение показателей деятельности оператора, измерения в процессе подготовки оператора к деятельности, определение предельных возможностей человека. Рассмотрим более подробно эти виды измерений и используемую при этом измерительную аппаратуру.
I. Определение параметров деятельности человека-оператора в процессе функционирования СЧМ осуществляется по таким направлениям.
1. Временные характеристики измеряются с помощью механических и электронных секундомеров, рефлексометров, хронорефлексометров, комплексных времяизмерительных устройств.
2. Точностные характеристики, ошибки определяются косвенно на основе измерений длительности действий и сопоставления с нормативами; путем регистрации пространственных характеристик методами фото-киносъемки, видеозаписи, цикло- и хроноциклографии, путем введения специальных автоматических устройств, фиксирующих ошибки в конкретной системе и ситуациях.
3. Алгоритмы и структуры действий в процессе приема, переработки и выдачи информации определяются путем регистрации траекторий движения глаз методами киносъемки, видеосъемки, окулографии, фото-, пьезоэлектрической записи и т. п.; исследования движений рук, ног и других частей тела описанными выше методами; фиксации переговоров и других способов обмена информацией в магнитозаписи и т.п.
4. Надежность деятельности операторов и функционирования СЧМ непосредственно не измеряется, а определяется расчетом при сопоставлении названных выше (пп. 1, 2, 3) характеристик с требованиями функционирования СЧМ.
5. Соответствие антропометрических и психофизиологических характеристик рабочего места условиям оптимальности определяется путем пространственных измерений в рабочей зоне с помощью линейных и угловых измерительных приборов, объективной регистрации движений и поз оператора в процессе деятельности методами фото-, кино-, видеосъемки, цикло- и синхроциклографии, а также с помощью динамометрии.
6. Параметры внешней среды (освещенность, звуковые воздействия и вибрации, метеорологические факторы, загазованность, запыленность и т. п.) измеряются специальным оборудованием для гигиенических исследований.
7. Групповое взаимодействие при совместной деятельности операторов исследуется описанными выше методиками объективной регистрации внешних действий, применяется магнитная запись общения и при необходимости графическая регистрация индивидуальных действий и взаимодействия с помощью различных самописцев, магнитографов, гомеостатов.
8. Психофизиологическое состояние операторов фиксируется дискретно или непрерывно с помощью комплекта физиологических датчиков с соответствующей аппаратурой (показатели состояния сердечно-сосудистой системы, дыхания, кожно-гальванических реакций, центральной нервной системы и т. д.). Наряду с непрерывными измерениями возможно периодическое исследование характера протекания психических процессов: измерение критической частоты слияния мельканий, длительности различных сенсомоторных реакций с помощью рефлексометрической аппаратуры, характеристик внимания, памяти, логического мышления путем предъявления тест-объектов с помощью тахистоскопов и другими методами; измерение точности и координации движений при выполнении специальных тестирующих действий (тремометрия, координометрия, динамометрия и т. п.); измерение функциональных характеристик анализаторов (зрительного, слухового, кожного) с помощью специальной аппаратуры.
В последнее время измерение параметров функционального состояния человека-оператора в процессе деятельности приобретает все большую важность в связи с усложнением задач, повышением требований к надежности СЧМ и является абсолютно необходимым при создании адаптивных систем.
Все перечисленные группы характеристик деятельности являются динамическими и могут быть определены только в ходе реальной деятельности по управлению СЧМ. Если это неосуществимо на функционирующем объекте, то измерения комплекса, а чаще всего отдельных характеристик выполняются на моделях с той или иной степенью приближения. Это широко используется при инженерно-психологическом проектировании СЧМ и в целях оптимизации действующих систем.
II. Измерения в процессе подготовки операторов к деятельности включают три направления, обусловленные спецификой ставящихся задач.
1. Профессиональная диагностика — измерение индивидуальных психологических и психофизиологических характеристик для выяснения их соответствия требованиям деятельности.
а) Характеристики анализаторов (органов чувств) измеряются с помощью разработанной для медицинских целей специальной аппаратуры, к которой относится большая группа офтальмологических приборов (адаптометр, аномалоскоп и др.) для исследования зрения, аудиометрическое оборудование для исследования слуха, ольфактометр для изучения обоняния, альгезиметры — болевой чувствительности и т. д.
б) Характеристики процессов переработки информации (восприятия, памяти, мышления) исследуется с помощью специальных устройств, обеспечивающих дозированное по времени, объему и прочим характеристикам предъявление информации и одновременную регистрацию хода и результатов ее обработки. Для этих целей используются тахистоскопы, рефлексометры, времяизмерительные устройства и специальные стенды, модели, в той или иной степени приближенные к конкретным интересующим исследователя ситуациям.
в) Моторные (двигательные), силовые и антропометрические характеристики измеряются специальным оборудованием, выпускаемым для медицинских целей (эргометры, динамометры, измерительные линейки, циркули и т. п.). сложные сенсомоторные характеристики точности, скорости, координации движений измеряются на специальных установках (тремометрах, «суппортах», координометрах и т. п., которые серийно не выпускаются).
г) Типологические характеристики центральной нервной системы определяются с помощью специальных аппаратурных и безаппаратурных тестов, для проведения которых унифицированного оборудования пока нет, либо с помощью электроэнцефалографа путем регистрации и анализа энцефалограмм при выполнении специальных заданий.
д) Индивидуально-личностные характеристики определяются с помощью бланковых методов и тестов. Для обработки и обобщения первичных данных целесообразно использовать ЭВМ.
2. Обучение, тренировка операторов, контроль результатов их деятельности осуществляется с помощью специальных стендов, тренажеров и другого оборудования, позволяющего имитировать основное психологическое содержание деятельности.
В тренажерах целесообразно использовать устройства регистрации параметров действий и обратной связи для ускорения хода научения и оценки его результатов.
Тренажеры используются также для поддержания уровня необходимой квалификации и готовности операторов в АСУ. где вмешательство в процесс управления необходимо только в моменты сбоев при переходе на ручное управление.
Контроль некоторых результатов обучения возможен с помощью диагностической аппаратуры, перечисленной в п. 1. С ее помощью удается измерить достигнутый уровень развития профессионально важных качеств и навыков.
3. Формирование групп операторов может производиться экспериментальным путем с применением гомеостатов различных типов, позволяющих оперативно выявить структуру группы, роли ее участников, показатели совместимости и срабатываемости.
III. В некоторых ситуациях, особенно при разработке новых систем или выяснения причин неэффективности существующих, важное значение имеет определение предельных возможностей человека по отношению к конкретному виду и условиям деятельности. Такое исследование возможно только на специальных моделях, стендах с одновременным применением комплектов аппаратуры, регистрирующей характеристики деятельности, функциональные возможности человека и групповые параметры в случае совместной деятельности нескольких операторов. Пример такого стенда показан на рис. 6.2.
Измерение рассмотренных выше характеристик и показателей деятельности оператора имеет ряд особенностей, связанных прежде всего с вариабельностью человеческого поведения. Это проявляется в следующем [167].
1. В процессе работы человек непрерывно обучается, что приводит к улучшению характеристик его работы. Это затрудняет воспроизводство испытаний, ибо при повторных испытаниях человек является более подготовленным, чем в предыдущих.
2. На протяжении рабочего дня наблюдается изменение показателей работы человека вследствие изменения его суточных биоритмов. Кроме того работоспособность человека носит фазный характер (рис. 4.9), поэтому при проведении измерений необходимо учитывать явления врабатываемости и утомления.
3. Все характеристики деятельности оператора в силу подверженности влиянию большого числа объективных и субъективных факторов являются случайными величинами, поэтому для их определения и регистрации необходимо использовать статистические методы.
По способу проведения инженерно-психологические измерения могут быть прямыми (искомая характеристика измеряется непосредственно, например, время реакции, число ошибок, физиологические показатели и т. п.) и косвенными, когда измеряется непосредственно не сама изучаемая характеристика, а некоторая вспомогательная величина (индикатор измерений), по измерению которой и судят об искомой характеристике. Процедура косвенных измерений в инженерной психологии рассмотрена в работах [127, 168].
Одним из наиболее важных и часто встречаемых видов измерения в инженерной психологии является измерение времени (времени реакции, времени выполнения отдельных действий, времени решения задачи оператором и т. п.). Измерение времени осуществляется при контроле функционального состояния оператора, проведении профессионального отбора, проведении различных видов хронометража, разработке нормативов операторской деятельности, оценке быстродействия и надежности оператора и системы «человек-машина», определении степени обученности оператора, контроле результатов его деятельности и т. п. Во многих случаях временные характеристики работы оператора используются в качестве индикатора при проведении косвенных измерений.
Для измерения времени в зависимости от величины измеряемых интервалов и требуемой точности можно использовать механические стрелочные секундомеры; электрические секундомеры импульсного типа либо электрические счетчики с генератором импульсов заданной частоты; электронные миллисекундомеры с цифровой индикацией и выходом для цифропечати. Последние наиболее удобны, однако в связи с ограниченными возможностями приобретения их можно заменить любыми счетчиками импульсов (пересчетными приборами, например, декатронами) с частотой счета не менее 103 импульсов в секунду и емкостью не менее четырех знаков (декад). Соединение таких счетчиков с генератором импульсов с частотой 1000 (100, 10) Гц превращает его в электронный секундомер с соответствующей точностью измерений.
В некоторых случаях (при проведении хронометража, нормировании операторской деятельности) возникает необходимость измерения времени выполнения оператором отдельных элементарных действий, что связано с рядом трудностей. Во-первых, это время трудно поддается непосредственному измерению (перцептивные, умственные, мнемические действия). Во-вторых, время выполнения многих элементарных действий весьма мало (сотни и даже десятки миллисекунд). В-третьих, зачастую сложно отделить одно действие от другого. Поэтому непосредственное измерение времени здесь затруднено и требует громоздкой и дорогостоящей аппаратуры. В этом случае для облегчения измерения времени выполнения отдельных действий может быть использовано сочетание аналитического и экспериментального методов [182].
Сущность методики заключается в следующем. Пусть имеется n задач, решаемых оператором. Каждая задача разбивается на k различных, но одних и тех же для каждой задачи типов элементарных действий. Обозначим через аij общее число действий j-го типа в i-ой задаче. Тогда математическое ожидание времени решения i-ой задачи равно
где — математическое ожидание времени выполнения j-го действия.
Если имеется n задач, то получаем систему n линейных алгебраических уравнений с n неизвестными. Если при этом определитель системы отличен от нуля, то система имеет единственное решение, в результате решения которого находятся неизвестные . Аналогичная система уравнений может быть получена и для определения дисперсий времени выполнения отдельных действий. Величины Тi измеряются при этом непосредственно с помощью приборов и методик, описанных выше. Подробнее описание данной методики и примеры ее практического использования приводятся в работах [168, 169].
Во многих случаях при проведении инженерно-психологических исследований помимо измерений осуществляется также регистрация (от лат. regestratio — список, перечень) действии оператора. Под ней понимается фиксация объективными методами действий оператора на некоторый материальный носитель (бумажную или магнитную ленту, фото- или кинопленку, запись в память ЭВМ и др.) с целью их дальнейшего анализа и изучения. С этой целью применяется регистрация рабочих движений и позы оператора, движений глаз, движений органов управления, речевых сообщений, временных характеристик трудового процесса, некоторых физиологических показателей.
Биомеханическую характеристику рабочих движений можно получить с помощью методов циклографии, киносъемки, голографии, гониографии и др. Пространственные перемещения фиксируются путем стереоскопической съемки, т. е. съемки двумя объективами с параллельными или конвергирующими оптическими осями. При исследовании угловых перемещений используются методы гониографии, тензометрии, измерения напряженности магнитных полей. Для изучения двигательной нагрузки используются шагомеры, они же могут применяться для регистрации вертикальных и горизонтальных движений рук.
Регистрация движений глаз осуществляется с помощью специального датчика, который укрепляется на глазном яблоке, путем киносъемки или записи изменений биопотенциалов глазных мышц (электроокулография), а также путем улавливания перемещений луча, отражаемого от глазного яблока. Для регистрации движений органов управления используются потенциометрические датчики с последующим усилением электросигнала и записью на осциллографе. Речевые сообщения (команды, доклады) фиксируются с помощью ларингофонов и магнитофонной записи. При этом важно регистрировать их одновременно с трудовыми операциями. Спектрально-временной анализ речи может дополнительно дать представление о степени нервно-эмоционального напряжения человека. Регистрация временных характеристик трудового процесса ведется с помощью хронометража, хронографии, фотографии рабочего дня. Для регистрации физиологических показателей используются электрофизиологические методы.
В заключение рассмотрим более подробно основные методы регистрации действий оператора. Среди них в первую очередь следует выделить циклографию, хронометраж и хронографию, эргографию, стробографию, соматографию.
Циклография дает возможность определить основные биомеханические параметры движения —траекторию, скорость, ускорение, мышечное усилие. Сущность ее состоит в регистрации точечных изображений траектории движения на неподвижную фотопленку. Для этого на подвижных частях тела укрепляются электрические лампочки. Перед фотоаппаратом помещается абтюратор, имеющий определенную скорость вращения. На фотопластинке фиксируются последовательные положения лампочек, перемещающихся при движении вместе с исследуемыми кинематическими цепями.
При киноциклографии в отличие от циклографии фотокамера с зафиксированной информацией о движении лампочек медленно и равномерно перемещается. Вместо лампочек используются контрастные отметки, а роль абтюратора играют последовательно снимаемые кадры. Эти методы позволяют осуществить плоскостную регистрацию циклических рабочих действий. Близким к рассмотренным методам является и стробофотография — метод исследования движения человека с помощью специальных снимков — хроноциклограмм, на которых запечатлена вся последовательность и характер действий человека во время выполнения какой-либо операции.
Хронометраж, хронография и фотография рабочего дня служат для получения данных о трудовом процессе, режимах труда и отдыха. Хронометраж— это измерение времени выполнения отдельных действий или операций с помощью секундомера, осциллографа, рефлексометра и т. п. Фотография рабочего дня заключается в определении продолжительности и последовательности труда и отдыха, регистрации всех операций в течение рабочего дня. Одной из разновидностей хронометража является хронография — графическая регистрация временных параметров. С помощью хронографии исследуется двигательная и сенсорная активность оператора в процессе трудовой деятельности. При этом объектом исследования могут быть рабочие движения и поза, зрительные, слуховые и тактильные обращения к объектам труда, средствам отображения информации и др.
Хронометражные наблюдения дают возможность определить временные характеристики элементов трудового процесса, характер и содержание труда, бюджет рабочего времени, свидетельствующий об общей занятости оператора и загруженности его на отдельных операциях. Это характеризует темп работы, позволяет выявить наличие напряженности или монотонности деятельности.
Эргография представляет запись результатов деятельности человека, связанных с изучением работы его мышц, определения величины мышечной работоспособности, регистрации движений рук и ног.
Под соматографией понимают технико-антропометрический анализ рабочей позы оператора. Целью соматографии является оценка удобства рабочей позы оператора путем построения соматограмм — схематических изображений тела человека вместе со средствами отображения информации, органами управления и т. д. в трех взаимно-перпендикулярных плоскостях.
Помимо соматографии при отработке конструкции рабочих мест используется и проектография. Она заключается в том, что изображение фигуры или силуэта человека в различных положениях проектируется на чертеж с готовых диапозитивов. Этот метод требует определенной подготовки, но и имеет существенное преимущество, заключающееся в том, что анализ можно проводить на чертежах и схемах, выполненных в различном масштабе. Таков далеко не полный перечень объективных методик, используемых для объективного измерения и регистрации показателей деятельности человека. Более подробные сведения по данному вопросу приводятся в соответствующей литературе [7, 87, 107, 108, 173, 205].
РАЗДЕЛ III. ПСИХОФИЗИОЛОГИЧЕСКИЕ ОСНОВЫ ДЕЯТЕЛЬНОСТИ ОПЕРАТОРА
Глава XI. ПРИЕМ ИНФОРМАЦИИ ОПЕРАТОРОМ
11.1. Психофиологическая характеристика процесса приема информации
Как уже отмечалось, одним из этапов деятельности оператора является прием осведомительной информации о состоянии объекта управления и ходе протекания управляемого процесса. Этот этап деятельности обеспечивается такими познавательными процессами, как ощущение, восприятие, представление.
Ощущение — это простейший психический процесс, состоящий в отражении отдельных свойств и явлений материального мира, а также внутренних состояний организма при непосредственном воздействии раздражителей на органы чувств. Иными словами, ощущение есть «превращение энергии внешнего раздражения в нервный процесс» [88; т. 18, с.46]. В инженерной психологии ощущение рассматривается не только как чувственный образ, но также как особого рода деятельность человеческого организма (сенсорная деятельность). Она может выражаться как во внутренних процессах, так и во внешних движениях, но она обязательно необходима для возникновения ощущения. Так, например, зрительное ощущение не может возникнуть при неподвижном глазе, оно всегда сопровождается движением глаз.
На основе синтеза ощущений складывается более сложная форма чувственного отражения — восприятие, которое представляет собой процесс целостного отражения предметов и явлений материального мира, действующих в данный момент на органы чувств человека. Восприятие возникает на основе ощущений, на основе отражения отдельных свойств и качеств предметов. В отличие от ощущений при восприятии отражаются не отдельные свойства, а предмет в целом. При этом восприятие не сводится к простой сумме ощущений, а представляет собой качественно новую ступень чувственного познания.
Восприятие, как основа процесса приема информации оператором характеризуется такими свойствами, как целостность, осмысленность, избирательность, константность. Целостность восприятия возникает в результате анализа и синтеза комплексных раздражителей в процессе деятельности оператора. Осмысленность состоит в том, что воспринимаемый объект относится к определенной категории.
Восприятие обладает также избирательностью, которая заключается в преимущественном выделении одних объектов по сравнению с другими. Избирательность восприятия является выражением определенного отношения оператора к воздействию на него предметов и явлений внешней среды.
Константностью восприятия называется относительное постоянство некоторых воспринимаемых свойств предметов при изменении условий восприятия. Например, при зрительном восприятии имеет место константность цвета, величины и формы предметов. Константность восприятия цвета заключается в относительной неизменности видимого цвета при изменении освещения. Относительное постоянство видимой величины предметов при их различной удаленности называется константностью восприятия величины. Константность восприятия формы предметов заключается в относительной неизменности восприятия формы предмета при изменении положения его по отношению к линии взора оператора. Константное восприятие связано с восприятием предмета или предметной ситуации как единого целого.
Важным свойством восприятия является также апперцепция (от лат. ар — к и perceptio — восприятие) — зависимость содержания и направленности восприятия от опыта человека, его интересов и отношений. Апперцепция придает восприятию активный характер. Воспринимая сигналы, оператор выражает определенное отношение к ним. Апперцепция отражает тот факт, что разные люди могут по разному воспринимать один и тот же предмет или, наоборот, разные предметы воспринимаются как один и тот же. Различают апперцепцию устойчивую (обусловленную опытом и мировоззрением) и временную (связанную, например, с настроением).
Перечисленные свойства восприятия не являются врожденными. Их источником являются активные действия различных функциональных систем человека, в результате чего он способен сформировать адекватный образ предмета или явления, называемый перцептивным. Следовательно, восприятие необходимо рассматривать не только как один из процессов отражения предметов и явлений внешнего мира, но и как особый вид умственной деятельности (перцептивная деятельность). Существенным компонентом восприятия (так же как и ощущения) являются моторные процессы, которые характерны для любого вида восприятия. Так, зрительное восприятие сопровождается движением глаз, слуховое — движением гортани, воспроизводящим слышимый звук. Особенно большую роль моторные компоненты играют при осязании.
Процесс восприятия, как отмечалось в главе II, является фазным процессом и включает в себя несколько этапов: обнаружение, различение, опознание, интерпретацию. В различных видах деятельности человека рассмотренные этапы могут иметь различную продолжительность во времени. Это зависит от количества и величины оперативных единиц восприятия, под которыми следует понимать содержание, выделяемое субъектом при выполнении той или иной перцептивной задачи. Примерами оперативных единиц могут служить отдельные признаки сигнала (яркость, цвет, форма), отдельные предметы и их совокупности, отношения между ними. Чем крупнее оперативные единицы восприятия, чем меньше их общее число, тем быстрее осуществляется процесс восприятия. Предельным случаем является симультанное (одномоментное) восприятие информации. Противоположным ему является сукцессивное (развернутое во времени) восприятие.
Сукцессивное восприятие развивается в процессе его микрогенеза. Микрогенез восприятия — это выделяемые в реальном масштабе времени фазы становления перцептивного образа. Так, при изучении зрительного восприятия выделено пять фаз:
• грубое различение общих пропорций и положения объекта;
• мерцание формы объекта;
• различение резких перепадов контура (грубое различение основных деталей);
• глобальное восприятие формы, но без достаточно четкого различения мелких деталей;
• оптимальное восприятие [93].
Указанная последовательность фаз может быть достаточно лабильной. В зависимости от задач и установок субъекта (апперцепции) микрогенез восприятия может не проходить все фазы, а заканчиваться на любой из них. Каждая фаза может инициировать определенное действие субъекта, в том числе и ошибочное. Установление фаз микрогенеза