Лекции.Орг


Поиск:




Классификация математических моделей операторской деятельности




Таблица 8.2

Для построения моделей деятельности оператора, как следует из табл. 8.2, может быть использован раз­личный математический аппарат.

Возможности применения математических методов в инженерной психологии

К математическим методам в инженерной психо­логии предъявляются следующие требования: размер­ность (описание процессов управления со многими неизвестными), динамичность (учет фактора времени), неопределенность (учет случайных, вероятностных составляющих в деятельности оператора), факторность (учет специфических особенностей поведения челове­ка, например, напряженности, эмоций и т. п.), описательность (возможность описания внутренних, психо­физиологических механизмов деятельности человека). Кроме того, применяемые методы должны допускать возможность описания деятельности человека и фун­кционирования машины с единых позиций, с помощью единых показателей и характеристик [196]. Сравни­тельная характеристика различных методов приведе­на в табл. 8.2.

Из этой таблицы видно, что метод, одинаково хоро­шо учитывающий все характеристики деятельности оператора, практически отсутствует. Каждый из рас­смотренных методов оптимален лишь по одной —двум характеристикам, иными словами, удачно описывает лишь определенные стороны деятельности оператора. Поэтому при решении инженерно-психологических задач очень часто приходится применять комбинацию тех или иных методов. Это можно сделать, воспользо­вавшись данными табл. 8.1. и 8.2. Рассмотрим более подробно возможности и особенности применения различных математических методов, перечисленных в этих таблицах, для построения моделей деятельности оператора.

8.3. Математическое моделирование деятельности оператора: модели задачи

Многие из моделей, перечисленные в табл. 8.1. и прежде всего модели первого вида (модели задачи) строятся на использовании структурного подхода. Под ним в общем случае понимается описание (с помощью определенной системы символов и правил их комби­наций) взаимосвязей между различными сторонами (элементами) изучаемого явления. В общей психологии разработан ряд моделей для структурного описания восприятия, памяти, принятия решения, процессов коммуникации и т. п. [92]. Широкое применение струк­турный подход находит и в инженерной психологии. В основе его лежит представление деятельности опе­ратора в виде определенной последовательности вы­полняемых действий. На этой основе базируется, на­пример, обобщенный структурный метод определения надежности оператора, к числу структурных относят­ся и многие из расчетных методов определения време­ни решения задачи оператором, на базе структурного подхода осуществляется алгоритмическое описание и анализ деятельности оператора, разрабатываются структурно-алгоритмические, сетевые и автоматные модели деятельности оператора. Дадим им краткую характеристику.

Применение в инженерной психологии теории автоматов и построение на ее основе моделей деятель­ности оператора основано на представлении ее как процесса функционирования конечного цифрового (дискретного) автомата [83, 174]. Под ним понимается математическая модель различного рода систем, кото­рые принимают, хранят и перерабатывают в дискрет­ном времени дискретную информацию. Такую модель можно применять, если деятельность оператора пред­ставляет собой дискретный стохастический процесс, состоящий из отдельных управляющих воздействий, формируемых на основании поступающей на сенсор­ные входы человека информации. Поэтому автоматные модели являются удобным средством представления и описания деятельности управляющего типа. Из абст­рактной теории автоматов известно, что процесс вы­полнения алгоритма (в данном случае — деятельности оператора) математически может быть представлен композицией двух абстрактных автоматов: управляю­щего и операционного (рис. 8.3).

Рис. 8.3. Композиционная автоматная (а) и общекибернетическая (б) модели деятельности оператора.

Операционный автомат A2 непосредственно осу­ществляет необходимые преобразования, а управляю­щий автомат A1 управляет этими процессами в соот­ветствии с заложенной программой, исходными данными N0 и случайными внутренними N1 (напри­мер, ошибки оператора) и внешними N2 факторами, оказывающими влияние на временные, точностные и надежностные характеристики деятельности. Такой подход полностью соответствует общекибернетичес­кой модели деятельности.

Деятельность оператора как процесс функциони­рования дискретного абстрактного автомата может быть представлена следующим образом. Афферентный (от лат. afferens — приносящий) поток дискретной ин­формации х (считывание показаний приборов, воспри­ятие команд и т. п.), поступающий на входоператора, переводит его как некоторую управляющую систему из состояния y(t) в состояние y(t+1). Результатом тако­го преобразования является дискретный стохастичес­кий поток эфферентности (от лат. efferens — вынося­щий) информации z (нажатие кнопки, установка переключателей, доклад и т. д.); при этом система пе­реходит в новое состояние. Данный процесс цикли­чески повторяется при переходе СЧМ из исходного состояния H0 в требуемое Нk, то есть реализуется фун­кция управления

(8.3)

где D — совокупная деятельность, которую нужно со­вершить в системе для перевода ее из состояния Н0 в состояние Hk.

Автоматное представление деятельности операто­ра предполагает ее ярко выраженный дискретный характер. Это приводит к важному заключению о принципиальной допустимости декомпозиции математичес­кого описания деятельности оператора. Декомпозиция операционного автомата позволяет перейти от решения задачи отображения (8.3) в общем виде к описанию отдельных подавтоматов, характеризующих элементар­ные действия оператора, что значительно проще. При этом используются промежуточные результаты преоб­разований Hi–1 ——————>Hi.

Зная входные сигналы автомата в целом или его отдельных подавтоматов и их функции переходов, мож­но описать их реакции (действия оператора). В простей­ших случаях автоматные модели строятся на основе детерминированных абстрактных автоматов, в более сложных случаях — на основе вероятностных автома­тов, функционирование которых в каждом такте рабо­ты описывается вероятностными законами.

Автоматные модели деятельности оператора об­ладают рядом достоинств, среди которых следует от­метить возможность в равной степени описания как машинного, так и человеческого звена в системе «че­ловек-машина», простоту построения модели, возмож­ность ее сопряжения с моделями других типов. В то же время этим моделям присущ и ряд недостатков: описание деятельности с позиций бихевиоризма (от лат. behavior— поведение), т. е. в основе модели ле­жит простейшая поведенческая формула «стимул-ре­акция», поэтому она не может претендовать на пол­ную адекватность описания реальной деятельности, поскольку в ней выпадает ее существенный компо­нент, связанный с высшей нервной деятельностью человека, его сознанием и мышлением. Поэтому при­менение автоматных моделей ограничено лишь теми видами деятельности управляющего типа, имеющими жестко алгоритмический характер. Возможности мо­дели могут быть расширены путем применения веро­ятностных моделей и имитационного моделирования с помощью ЭВМ.

На базе структурного подхода может быть постро­ена целая группа моделей, условно называемых сете­выми. В основу их построения положены те или иные виды сетей. Наиболее полно разработаны модели, в основу которых положены традиционные методы се­тевого планирования и управления (СПУ). Для постро­ения сетевой модели деятельность оператора разбива­ется на ряд отдельных действий, имеющих вполне определенный смысл, например, нажатие кнопки, включение тумблера, движение руки к органу управ­ления, перемещение взгляда, опознание характерис­тики объекта и т. п. На языке сетевых моделей эти действия называются работами, а моменты их завер­шения — событиями. Каждая работа в конечном итоге должна быть охарактеризована двумя параметрами — математическим ожиданием и дисперсией продолжи­тельности (времени выполнения) работы. Общее время решения задачи оператором равно продолжительности критического пути. В таком виде модель используется для априорной оценки времени решения задачи опе­ратором, а также для описания и оптимизации группо­вой деятельности операторов [27, 61]. Основным дос­тоинством сетевой модели является возможность учета последовательно-параллельного характера выполнения отдельных действий оператором (группой операторов). Остальные достоинства и недостатки такие же, как у автоматных моделей.

Принципиально новым подходом в теории и прак­тике сетевых методов являются функциональные сети [137]. Они представляют собой языково-алгебраическую систему для описания поведения логико-динами­ческих объектов дискретного типа любой природы, в том числе и деятельности оператора, функциональные сети являются обобщением аппарата алгоритмических, автоматных, традиционных сетевых методов; они при­меняются для построения математических моделей, позволяющих получать вероятностные и ресурсные (в том числе и временные) характеристики деятельности оператора.

Применение функциональных сетей позволяет перейти от ретроспективных индуктивно-эмпиричес­ких методов к более прогностичным дедуктивно-формальным методам исследования, отражающим как специфические свойства отдельных элементов (и че­ловека, и машины), так и их системную результатив­ность и устойчивость функционирования.

Еще одной разновидностью сетевых моделей явля­ется описание различных управляющих действий че­ловека (более широко — его поступков) с помощью фреймов. Фрейм (от лат. frame — рама, скелет) — это иерархически упорядоченная структура данных, кото­рая является минимально необходимой для задания стереотипных ситуаций или данного класса объектов. В инженерной психологии аппарат фреймов использу­ется для описания и анализа ошибочных действий оператора [78].

Для построения сетевых моделей деятельности опе­ратора может быть использован также математический аппарат сетей Петри [27, 138]. Сеть Петри представля­ет математическую модель дискретных систем с парал­лельно функционирующими и асинхронно взаимодей­ствующими компонентами. Предложены немецким ученым К. Петри в начале 60-х гг. Графически сети Петри (рис. 8.4) представляют собой двухдольный ори­ентированный мультиграф с вершинами двух типов: переходами (моделирующими события в дискретной системе) и позициями (моделирующими предусловия выполнения события и постусловия, возникающие пос­ле события). Позиции графически обозначаются кру­жочками, переходы —черточками (рис. 8.4). Направлен­ное ребро может связывать только позицию и переход. Кроме того, задается начальная разметка позиций: каж­дой из них сопоставляется одно из чисел 0, 1, 2... (число маркеров или фишек). Этим числом моделируется не­которая емкость позиций, количество ресурсов в ней. По отношению к переходам позиции могут быть входными или выходными. Некоторый переход t называет­ся возбужденным или разрешенным (и может срабо­тать), если число фишек его входной позиции р не меньше числа ребер, ведущих из р в t. Срабатывание возбужденного перехода заключается в удалении из каждой его входной позиции р числа фишек, равного числу ребер, ведущих из р в t, и добавлении в каждую его выходную позицию q числа фишек, равного числу ребер, ведущих из t в q. В результате срабатывания перехода получается новая разметка сети Петри. Два возбужденных перехода с общими позициями не долж­ны срабатывать одновременно [166].

 

Рис. 8.4. Графическое изображение сети Петри.

С помощью сетей Петри моделируются не времен­ные, а причинно-следственные связи. Они широко при­меняются для моделирования различных систем. В ин­женерной психологии их используют для описания, проектирования и исследования деятельности операто­ра (группы операторов), определения показателей ка­чества деятельности, расчета надежности системы «че­ловек-машина». Например, в работе [138] сети Петри использованы для моделирования групповой деятельно­сти операторов алгоритмических СЧМ. Для этого с каж­дым переходом сети, соответствующим действиям опе­ратора, связываются соответствующие этому действию математическое ожидание и дисперсия времени, а так­же вероятность его безошибочного выполнения, а с каждой позицией — вероятность передачи управления от одного действия к другому. Эти характеристики за­даются с учетом сложности и структуры пультов управ­ления операторов, воздействий факторов внешней сре­ды, наличия напряженности в деятельности операторов, вызванной дефицитом времени на выполнение алгорит­ма. Для определения характеристик деятельности опе­ратора сеть представляется в виде формульной записи. В дальнейшем осуществляется последовательное сокра­щение этой записи путем применения к каждой из операций формулы соответствующих ей соотношений, которые используются в аналитических методах оцен­ки вероятностных характеристик алгоритмов при эле­ментарных преобразованиях, упрощающих граф, пред­ставляющий алгоритм.

Собственно моделирование групповой деятельно­сти осуществляется следующим образом. По словесному описанию алгоритма групповой деятельности (инст­рукции по эксплуатации) строится сеть Петри, отобра­жающая этот алгоритм. Для этого используется систе­ма переходов от вершин параллельной граф-схемы алгоритма к фрагментам сети Петри. На основе ана­лиза особенностей групповой деятельности (наличие операций приема и выдачи команд) сделан вывод о це­лесообразности расширения системы переходов путем введения двух дополнительных вершин типа «прием команды» и «выдача команды», что позволяет упрос­тить процедуру алгоритма построения сети и процеду­ру его анализа на корректность. В таком виде сеть Петри применяется для априорной оценки групповой деятельности по критериям математического ожидания и дисперсии времени выполнения алгоритма группой, вероятности его своевременного и безошибочного выполнения [138].

На базе структурного подхода строятся также ал­горитмические и структурные модели. Алгоритмичес­кие модели характеризуются использованием алгорит­мического языка, впервые примененного в инженерной психологии Г.М. Зараковским [52]. Модели этого клас­са в принципе могут использоваться для описания любой целостной деятельности, имеющей дискретный характер. Важнейшими ограничениями для примене­ния этих моделей служат отсутствие в них операций синтеза и нестохастический характер используемых в них алгоритмов. По этой причине алгоритмические модели имеют в основном лишь дискурсивное (от лат. discursis — рассуждение), т. е. формальное, не допус­кающее расчета применение к сложной целостной деятельности. Однако для отдельных видов деятельно­сти, для которых удается построить алгоритм, введены и нормативные дополнения [цит. по 178]. В этом слу­чае они используются для определения показателей сложности истереотипности деятельности оператора. Особенно продуктивным применение этих моделей оказывается при использовании нормированных пока­зателей [10}.

Структурные модели отображают деятельность оператора с точки зрения ее надежности и эффектив­ности. В определенной мере эти модели представля­ют собой обобщение алгоритмических для совокупно­сти режимов работы, выполняемых оператором задач, алгоритмов их решения, блоков (составляющих алго­ритмы) и конкретных сенсорных, моторных и логи­ческих операций. Существенным отличием структур­ных моделей от алгоритмических является разработка «типовых блоков» с известными (в общем виде) веро­ятностными и временными характеристиками. Из таких блоков как из «кирпичиков» можно синтезиро­вать структуры сложной деятельности и рассчитывать ее вероятностные и надежностные характеристики. В дальнейшем этот метод трансформировался в фун­кционально-структурную теорию СЧМ, в основе ко­торой лежат рассмотренные ранее функциональные сети [137].

В ряде случаев модели деятельности оператора могут строится на базе математического аппарата те­ории множеств. Под ней понимается раздел математи­ки, исследующий общее свойство множеств. Множе­ством называется любое объединение в одно целое некоторых определенных и различных между собой объектов нашего восприятия или мысли [166]. Теоре­тико-множественные модели в инженерной психоло­гии предложены К.С. Козловым для описания процес­са информационного поиска оператором, описания процессов обучения; на их основе разработаны элемен­ты семантической теории информации [70]. С.В. Бори­сов использовал теоретико-множественную модель для оценки степени неупорядоченности оперативного поля пультов управления [10].

Дальнейшим развитием теоретико-множественно­го подхода в инженерной психологии является приме­нение размытых (нечетких) множеств, понятие о кото­рых введено Л. Заде [цит. по 173]. Такой подход основан на том, что ключевые элементы в человеческом мыш­лении являются классами объектов, в которых переход от принадлежности к одному классу и непринадлеж­ности к нему составляет непрерывный континуум, и что логика причинно-следственной связи в человечес­ком мышлении отличается от формальной логики и подчиняется многозначной логике. Класс, который допускает возможность частичного членства, называ­ется размытым, или нечетким, множеством. Такое мно­жество объектов задается с помощью функции при­надлежности, принимающей численные значения в диапазоне [0—1] в соответствии со степенью принад­лежности объекта к данному множеству. Размытое множество характеризуется функцией принадлежнос­ти mа: u ———— > 0,1, описывающей каждый элемент uÎU некоторым числом mа (u) из интервала [0 – 1].

Нечеткое множество наиболее адекватно описы­вают процессы оперативного мышления оператора, поэтому они являются хорошей моделью для описания процессов принятия решения [27, 195], они находят применение для описания явлений неопределенности, с которой часто сталкиваются при решении различного рода инженерно-психологических задач [184]. Инте­ресна попытка применения Г. Г. Маньшиным аппарата нечетких множеств для проведения инженерно-психо­логической оценки СЧМ [173].

8.4. Математическое моделирование деятельности оператора: модели оператора

Математические модели, построенные на основе структурного подхода, обладают существенным недо­статком, заключающемся в представлении структуры деятельности оператора в неизменяющемся, постоян­ном виде. (Сказанное не относится только к моделям, в основе которых лежат функциональные сети). Для преодоления этого недостатка Г.В. Суходольским пред­ложены понятия вероятностного алгоритма и случайной структуры, которые реализуются им при построении структурно-алгоритмических моделей деятельности [111,178]. Эта модель использует математический ап­парат теории графов и матричной алгебры и представ­ляется в виде абстрактного графа деятельности (рав­новесного стохастического мультиграфа).

Абстрактный граф деятельности (АГД) представля­ет собой некоторую конечную совокупность вершин, отображающих элементы деятельности (людей, пред­меты и орудия труда, реализуемые операции), и сопо­ставленную этим вершинам совокупность дуг, харак­теризующих связи между элементами деятельности (материальные, информационные, энергетические). АГД можно рассматривать как наиболее общую модель деятельности, поскольку в принципе его дугам и вер­шинам могут быть приписаны любые качественные и количественные характеристики. При этом дуги АГД могут быть определены любым математическим и физическим образом. Благодаря этому, а также специ­ально разработанному новому математическому аппа­рату построения вероятностных алгоритмов и синтеза равновесных мультиграфов оказывается возможным математически описывать практически любую слож­ную деятельность, а далее на полученном описании использовать другие известные модели деятельности.

Так, рассмотренные выше сервомодели (модели слежения), основанные на использовании передаточ­ных функций, могут быть представлены как ориенти­рованные или неориентированные графы, вершины которых есть условно выделяемые звенья (усилитель­ные, инерционные, дифференцирующие, интегрирую­щие и т. п.) с известными передаточными свойствами, а дуги (ребра) имеют смысл входных и выходных пе­ременных. Информационные модели представляют собой подграфы от стохастического орграфа, верши­ны которого есть вероятностно характеризуемые при­знаки, определенные на множестве средств индикации, а также состояния системы, определяемые этими при­знаками, а дуги — импликации. Точно также можно показать, что и другие модели деятельности в конеч­ном итоге могут быть сведены к АГД.

Такому графу и его модификациям однозначно соответствует ряд матриц: матрица смежности; матри­ца, описывающая вероятностный алгоритм решения каждой задачи в любом из режимов работы; матрица для каждого режима работы; матрица для описания работы оператора во всех режимах. Исходной являет­ся матрица смежности, остальные получаются на ее основе с помощью специально введенной операции обобщения. Полученные в матричной форме выраже­ния позволяют получить математические модели на разных структурно-алгоритмических уровнях: реализа­ции алгоритма, алгоритма задачи, индивидуальной задачи, коллективной задачи. Каждая из этих моделей может быть построена в двух специфических формах: операционно-логической и предметно-функциональной.

В первом случае модель представляется в виде графа, вершинами которого являются коды сенсорных, моторных и логических операций, а дугами — импли­кации, характеризуемые частотой. Во втором случае модель также представляется в виде графа. Однако вершины в нем определены предметно, в виде средств контроля и управления, а дуги, характеризуемые час­тотой, определены функционально как пространствен­ные перемещения специалиста, а также в виде посту­пающей к нему и исходящей от него информации. Большое внимание при построении моделей уделяется вопросу получения оценок для взвешивания частотных алгоритмов и способам синтеза более крупных струк­тур из подструктур, оптимальных на уровне частных алгоритмов.

В разработанных моделях используются: перечис­ление реализации частных алгоритмов при наиболее вероятных сочетаниях логических условий; специаль­ное матричное представление этих реализации и их объединение в виде

(8.4)

где D — надматрица, отображающая модель деятель­ности для I задач, m режимов работы и n способов решения каждой задачи; Arij — подматрица j-й реали­зации i-го частотного алгоритма в r-ом режиме (; ; ); Irij, Iri, Ir — частота j-го способа i-й задачи и r-го режима работы соответственно.

Путем введения специальной оценки эффективнос­ти труда оператора данная модель позволяет осуществить оптимальную компоновку рабочего места оператора.

Помимо использования для построения структур­но-алгоритмических моделей деятельности оператора теория графов используется в инженерной психоло­гии и для решения целого ряда других задач: для оп­тимального размещения людей и машин в рабочих по­мещениях и оборудования на рабочем месте [111,178]; для описания и анализа потоков информации в систе­мах контроля и управления [135, 178]; для описания и машинного моделирования процессов памяти, опера­тивного мышления и принятия решений [151, 100]; для описания и анализа организационной структуры тру­дового коллектива — формальной и неформальной [25, 175]. Методы теории графов лежат также в основе одного из подходов к построению семантической тео­рии информации [70].

Для построения моделей оператора может исполь­зоваться и математический аппарат теории игр; такие модели называются игровыми. Теорией игр называет­ся раздел математики, изучающий абстрактные моде­ли конфликтных ситуаций. Под конфликтной понима­ется ситуация (игра), в которой участвуют как минимум два игрока (лица, коллективы, управляющие системы), стремящиеся по некоторым определенным в игре пра­вилам обеспечить себе максимальный выигрыш. Ин­тересы игроков полностью или частично противопо­ложны, то есть всякое улучшение положения одного игрока ухудшает положение другого- Простейшей схе­мой теории игр является конечная игра двух лиц с нулевой суммой. При этом каждый игрок независимо от другого выбирает одну из конечного числа возмож­ностей. Каждой паре выбранных возможностей соот­ветствует некоторый выигрыш одного игрока, равный проигрышу другого, то есть сумма выигрышей обоих игроков равна нулю. Цель теории игр заключается в выработке рекомендаций для определения оптималь­ной стратегии каждого из участников игры. Все реко­мендации выбираются в предположении, что против­ник является разумным и делает все для того, чтобы помешать игроку добиться своей цели. Поэтому воз­можности применения теории игр для создания моде­лей деятельности оператора весьма ограничены, по­скольку он, как правило имеет дело с неразумным «противником». В этом плане весьма спорным являет­ся утверждение о том, что одним из наиболее перспек­тивных направлений развития моделирования для проектирования деятельности человека является ис­пользование математического аппарата теории игр [55]. К сожалению, реальное положение дел не соот­ветствует этому утверждению.

Одна из самых первых и наиболее удачных игро­вых моделей в инженерной психологии была предло­жена В.Ф. Вендой для описания процесса технической диагностики (поиска отказов) человеком-оператором [17]. Модель базируется на следующих исходных ус­ловиях. Оператор получает сигнал об отклонении ре­жима от нормы. Существует п параметров, проверка значений которых позволяет установить причину от­клонения и компенсировать его одним из имеющихся способов. Чем быстрее оператор найдет причину, тем быстрее он ликвидирует отклонение; при каждой не­удачной попытке — вызове «пустого» параметра или неудачном опережающем действии — оператор «пла­тит» потерей времени и, возможно, дальнейшим ухуд­шением состояния объекта. Выигрыш и потеря могут быть в каждом случае оценены количественно.

Для нахождения оптимальной стратегии операто­ра необходимо найти оптимальную перестановочную матрицу; ее размер 2nхn2. Число последовательных шагов для получения достаточно хорошего приближе­ния равно nm, где m — небольшое положительное чис­ло, такое что nm<n!. Процедура технической диагнос­тики сводится к одномерному варианту игры и состоит в следующем: 1 — оператор (игрок 1) пытается опре­делить какой из п параметров определяет наличие не­исправности; 2 — параметр (игрок 2) скрыт в одном из п сигнальных элементов устройства отображения.

Игра продолжается до нахождения параметра (иг­рока 2), обозначенного как выигрыш оператора (игро­ка 1). Эту процедуру можно представить как поиск набора положительных чисел d; (чем длиннее пере­бор параметров, тем меньше выигрыш оператора, если же оператор не успевает предотвратить аварию и она происходит, это рассматривается как выигрыш игрока 2). Если параметр скрыт в i-м сигнальном элементе с вероятностью хi, то оператор стремиться выбрать такое i, при котором aixi= (aixi), где аi — есть какая-либо оценка эффективности i-го действия оператора.

Математический аппарат теории игр предлагается также использовать в качестве основного средства для описания и разрешения различного рода конфликтов в системе «человек-машина» [131]. Здесь приведена классификация возможных конфликтов, дается их под­робное математическое описание, показаны в общем виде пути их разрешения. Одним из основных путей предлагается использовать возможность преобразова­ния неорганизованного конфликта в организованный. Рассмотрение этого вопроса ведется с позиций разви­ваемого автором данной работы организмического под­хода к проектированию и построению СЧМ. К сожале­нию, предлагаемые игровые модели носят очень общий и абстрактный характер, а пути их практической реали­зации и примеры практического применения никоим образом не приводятся.

Наиболее широкое применение в настоящее время для описания деятельности оператора находят методы теории информации, теории массового обслуживания, теории автоматического управления. Получаемые на основе использования этих методов модели деятельно­сти называются соответственно информационными, сервисными (или моделями обслуживания), моделями слежения. Рассмотрим их более подробно.

Применение теории информации для моделирова­ния деятельности оператора основано на представле­нии его в качестве канала связи, задачей которого является передача информации со средств отображе­ния на органы управления. Построение модели осно­вано на расчете количества информации по формулам (2.2) и (2.3). Они представляют собой наиболее общие формулы для расчета количества информации.

Однако оператор в своей деятельности выполняет различные действия (поиск сигнала, считывание пока­заний с прибора, производство вычислений, управля­ющие движения т. п.). Для каждого из этих действий в зависимости от конкретных условий их выполнения могут быть получены частные формулы для определе­ния количества информации.

Для получения частных формул необходимо вос­пользоваться двумя основными правилами.

1. Количество информации характеризует сложность выбора одного состояния из n возможных. Поэтому в любом частном случае нахождения количе­ства информации прежде всего необходимо опре­делить общее число возможных состояний данной системы и их вероятности, а затем применить формулу (2.2) при неравновероятных или (2.3) при равновероятных состояниях системы.

2. К величине информации применимо правило адап­тивности. Это означает, что общее количество ин­формации, поступающей от нескольких источников, равно суммарному количеству информации от каж­дого источника в отдельности. Правило справедли­во, если все источники взаимонезависимы. Приме­нительно к деятельности оператора это означает, что для определения общего количества информации, перерабатываемой человеком, необходимо вначале определить количество информации, используемой при выполнении каждого действия, а затем найден­ные значения просуммировать.

Порядок применения этих правил рассмотрим на частном примере. На рис. 8.5 показана лицевая сторо­на измерительного прибора, имеющего три диапазона измерений: 50 В, 100 В и 500 В. Определим количество информации, которую перерабатывает оператор, про­водя измерение на каждом из диапазонов.

Рис. 8.5. Лицевая панель измерительного прибора.

На первом диапазоне оператор снимает отсчет с прибора и найденное значение делит на два. Если погрешность снятия показаний равна ±d, то общее число различимых оператором состояний прибора равно

(8.5)

где Хmax и Xmin — соответственно максимальное и ми­нимальное значение шкалы прибора.

Считая, что величина 5 равна половине цены деле­ния шкалы и что все показания равновероятны, из формулы (2.3) следует

Найденное показание оператор должен разделить на два. Количество информации, используемой при вычислении, находится по формуле

(8.6)

где Ni — максимально возможные значения использу­емых при вычислении чисел; m — количество чисел, используемых при вычислении; R — максимально воз­можное значение результата вычисления.

Нетрудно заметить, что формула (8.6) получена на основании приведенных выше правил. Ее применение основано на том, что при производстве вычислений человек m раз производит выбор нужного числа из N, возможных, а при получении результата — выбор од­ного числа из R возможных.

Подставляя исходные данные в формулу (8.6), по­лучим: Нвыч = lg2l00 + lg22 + lg250 = 13,28 дв.ед.

Общее количество перерабатываемой информации равно H1 =Hпр + Hвыч = 5,64 + 13,28 = 18,92 дв.ед.

Рассмотренная стратегия поведения характерна для оператора малообученного или оператора, который сравнительно редко производит измерения на данном диапазоне. Если же оператор часто работает с прибо­ром, то у него могут быть сформированы и храниться в памяти эталоны истинных значений для каждого значения шкалы прибора. Тогда действие по переводу отсчета со шкалы в истинное значение практически будет отсутствовать, выполняться автоматически на уровне навыка, внимание оператора на его выполне­ние специально не будет направлено. При каждом отсчете оператор будет извлекать из памяти хранящиеся там эталоны истинных значений измеряемого по­казателя и использовать их для получения конечного результата без производства специальных вычислений. Очевидно, количество перерабатываемой человеком информации будет определяться только той величиной, которую оператор получает производя отсчет по шка­ле прибора, т. е. в этом случае Hi = 5,64 дв. ед.

Как видим, информационные методы не всегда дают однозначный ответ о результатах деятельности оператора. Даже решая одну и ту же задачу, человек может применять различные стратегии поведения. Это существенно влияет на количество информации, пере­рабатываемой при решении задачи.

При работе на втором диапазоне оператор сразу получает истинное значение измеряемого показателя, т. е. Н2 = 5,64 дв. ед. При работе на третьем диапазоне оператор помимо снятия отсчета должен умножить полученное значение на пять. Расчет количества ин­формации производится аналогично тому, как это де­лалось для первого диапазона.

Методы теории информации применяются в инже­нерной психологии при решении ряда задач. Во-первых, количество перерабатываемой информации может ис­пользоваться как мера сложности работы оператора, следовательно, такой способ позволяет сравнивать меж­ду собой различные виды операторской деятельности. Во-вторых, зная количество информации, можно оценить время, которое затрачивает оператор на переработку этой информации, поскольку между ними, как правило, существует линейная зависимость. В-третьих, знание количества информации позволяет согласовать скорость ее выдачи (производительность источника информации) с психофизиологическими возможностями человека по ее приему и обработке. Условием неискаженной пере­дачи информации является: Vпос < Vоп, где Vпос — ско­рость поступления информации к оператору; Vоп — про­пускная способность оператора.

Величина Vоп зависит от характера деятельности оператора. Если он может быть представлен как канал без памяти, то величина пропускной способности ле­жит в пределах 10—70 дв.ед/с. В этом случае человек работает как простой канал передачи информации, последовательные сигналы независимы друг от друга, предыдущий сигнал не влияет на прием следующего (печатание на машинке, корректорская работа, выпол­нение арифметических операций и т. п.).

Если в процессе деятельности оператору необ­ходимо запомнить отрезок входной последовательно­сти сигналов, не превышающий объем кратковре­менной памяти, то в этом случае человека можно рассматривать как канал переработки информации с кратковременной памятью. Пропускная способ­ность имеет в этом случае порядок нескольких дв. ед. в секунду (примерно 2—4 дв. ед/с). Такой режим является наиболее характерным для деятельности оператора.

Если же отрезок входной информации превышает объем кратковременной памяти, то для его запомина­ния необходимо многократное повторение. Пропускная способность вследствие этого падает до десятых долей дв. ед. в секунду и ниже [111].

Применение теории информации для анализа де­ятельности оператора связано с целым рядом трудно­стей. Это обусловлено тем, что теория информации была создана для решения ряда задач в технике связи. Поэтому простой перенос ее методов в другую об­ласть — исследование человеческой деятельности — не всегда дает желаемые результаты.

Основные причины трудностей применения тео­рии информации для изучения деятельности операто­ра заключаются в следующем:

1. В основе расчета количества информации по форму­лам (2.2) и (2.3) лежит длина физического алфавита сигналов и вероятностей их появления. Человек же зачастую пользуется собственным (внутренним) алфа­витом сигналов, отличным от физического, а субъек­тивные вероятности сигналов для человека не всегда совпадают с объективными. Однако принципы фор­мирования субъективного алфавита еще до конца не раскрыты. Поэтому приходится пользоваться неко­торой идеализированной моделью деятельности че­ловека, в основу которой положены характеристики входных, а не «внутренних» сигналов человека.

2. Теория информации занимается лишь стационар­ными процессами, статистические характеристики которых с течением времени не меняются. Ха­рактеристики же человека ввиду его обучаемости, утомляемости, действия различных факторов бес­прерывно меняются во времени.

3. Теория информации не учитывает смысловую сто­рону информации, ее ценность и значимость. На деятельность же оператора оказывают влияние не только статистические характеристики сигналов, но и их смысл и значение для оператора.

4. Теория информации не учитывает временную нео­пределенность сигналов. Для человека же имеет большое значение не только то, какие сигналы и с какой вероятностью к нему поступают, но и время их поступления [155]. Это является источ­ником дополнительной неопределенности, которая при анализе деятельности, как правило, не учи­тывается.

Наличие этих трудностей накладывает существен­ные ограничения на применение теории информации в инженерной психологии. Игнорирование их приво­дит к значительному разбросу экспериментальных данных и затрудняет сопоставление результатов, по­лученных в разных исследованиях. Однако это не дол­жно являться причиной отказа вообще от применения информационных методов в инженерной психологии. Как и любой другой, информационный метод справед­лив лишь при определенных условиях и для решения определенных задач. Эти условия в общем виде сво­дятся к следующему:

• четко определен алфавит используемых человеком сигна­лов и вероятности их появления;

• сигналы по своему смысловому значению примерно рав­ноценны для оператора;

• характеристики работоспособности оператора в преде­лах изучаемого отрезка времени не претерпевают суще­ственных изменений;

• стратегия поведения оператора известна и не меняется в процессе решения однотипных задач;

• число поступающих к оператору различных сигналов не­велико, сами сигналы слабо зависят Друг от друга;

• временная неопределенность сигналов существенно мень­ше смысловой неопределенности или же она может быть учтена при расчетах количества информации.

В тех случаях, когда эти условия соблюдены, при­менение теории информации для изучения и описания деятельности оператора дает весьма полезные резуль­таты [122, 168, 207]. Наряду с этим делаются интенсив­ные попытки совершенствования информационных методов применительно к анализу и описанию деятель­ности оператора. Эти попытки идут как по пути совер­шенствования существующих методов, использующих энтропийные оценки количества информации, так и по пути учета семантической стороны информации.

Например, в работе [155] существенно расширя­ется понятие энтропии по сравнению с рассмотрен­ными выше случаями. При этом считается, что любой сигнал индикатора как источника информации может полезно служить задачам контроля и управления лишь в том случае, если он будет соотнесен ко времени его появления и экспозиции. Таким образом, для деятель­ности оператора важна не только статистическая (ча­стота появления), но и временная (время появления) неопределенность. В силу этого возникает необходи­мость явного введения времени в исходные соотноше­ния для оценки энтропии и количества информации. С математической точки зрения этот шаг эквивалентен переходу от уровня случайных событий на уровень случайных процессов в моделировании взаимодей­ствия человека и машины.

При таком подходе в качестве основы для формиро­вания выражений энтропии и количества информации необходимо рассматривать вероятности наступления тех или иных событий Xi в интересующий нас момент ti на отрезке времени наблюдения 0 £ t £ T, т. е. вероятности Р (хi, t). Тогда для полной количественной характеристи­ки неопределенности ситуации с учетом неопределенно­сти, вносимой фактором времени, будем иметь

(8.7)

Среднее количество информации в сообщении, вырабатываемом на отрезке наблюдения, составит

(8.8)

Нахождение вероятностей Р (хi, t) является специ­фической задачей и определяется типом и характером протекания процесса управления, а также теми требо­ваниями, которые предъявляются к деятельности опе­ратора.

Энтропия сообщения и определяемое ею количе­ство информации определяется по формулам (2.2) и (2.3). Как уже отмечалось, эти формулы оценивают энтропию взаимно независимых сообщений. Иными словами, предполагается, что появление того или ино­го сообщения не изменяет вероятность появления сле­дующего сообщения. Однако при работе оператора в СЧМ такой случай не всегда возможен. Как правило, поступающая последовательность сигналов обладает логической избыточностью. Это означает, что появле­ние определенного сигнала изменяет вероятность по­явления следующего сигнала. Наличие логической избыточности равносильно уменьшению энтропии, поскольку появление определенного сигнала хi умень­шает неопределенность очередного состояния инфор­мационной модели.

При подсчете количества поступающей в этом случае информации необходимо пользоваться форму­лами условий энтропии. Так, например, энтропия вто­рого и третьего порядка равна

(8.9)

(8.10)

где Рij и Pijk — вероятности появления всех возможных диграмм и триграмм сигналов (совместного появления двух и трех сигналов); H1 — энтропия первого порядка, определяемая по формуле (2.2); , — максималь­но возможное число диграмм и триграмм сигналов, рав­ное числу размещений по два и по три из общего числа n сигналов.

Формула (8.9) выражает среднюю энтропию сиг­нала при условии, что уже известен предыдущий, фор­мула (8.10) — энтропию сигнала, если известны два предыдущих. Подобным образом можно вычислить и энтропию более высоких порядков [119].

Для построения моделей деятельности оператора может использоваться также математический аппарат теории массового обслуживания. Структурная схема системы массового обслуживания. (СМО) с человеком-оператором показана на рис. 8.6. Информация со средств отображения и от взаимодействующих опера­торов, а также сигналы внешней среды образуют вхо­дящий поток заявок (требований на обслуживание). Обычно предполагается, что входящий поток подчинен закону Пуассона. Такой поток иначе называется про­стейшим. Для его описания требуется знать величину lk — плотность входящего потока, которая равняется числу заявок, поступивших в единицу времени. Заявки поступают или прямо к оператору, или становятся в очередь на обслуживание (если оператор занят обслу­живанием предыдущей заявки). Устройством для хра­нения очереди могут быть средства отображения ин­формации или память оператора. В зависимости от организации очереди могут быть различные типы СМО: с ожиданием, или без потерь (любая заявка хранится до тех пор, пока не будет обслужена оператором); с ограниченным ожиданием (заявка хранится в очереди ограниченное время); с ограниченной длиной очереди (в очередь может становиться лишь ограниченное чис­ло заявок); с потерями (заявки, поступившие в момент занятости оператора, в очередь не становятся и к об­служиванию не принимаются).

 

Рис. 8.6. Структурная схема системы массового обслуживания с человеком-оператором.

Организация очереди определяется характером деятельности оператора. Поэтому при проектировании деятельности следует стремиться, чтобы она, насколь­ко это возможно, была организована по схеме массового обслуживания с ожиданием. При прочих равных условиях это позволяет обеспечить максимальную эффективность функционирования СЧМ.

Заявки, поступившие к оператору, обрабатывают­ся им по заданному алгоритму. Качественная сторона обслуживания (правильно или неправильно обработа­на информация, с какими затратами сил и средств, какой психофизиологической «ценой» и т. п.) в теории массового обслуживания не учитывается: здесь значе­ние имеет факт поступления или непоступления заяв­ки на обслуживание.

Таким образом, в данной модели оператор пред­ставляется в качестве обслуживающего аппарата СМО. Основной его характеристикой является время обслу­живания, в теории массового обслуживания оно обыч­но принимается подчиненным экспоненциальному закону распределения. Для построения закона распре­деления необходимо знать интенсивность обслужива­ния m, которая является величиной, обратной средне­му значению времени обслуживания.

Характер обслуживания заявок может быть одно­канальным или многоканальным, однофазным или многофазным. При многоканальном обслуживании входящий поток распределяется между несколькими операторами. При многофазном обслуживании посту­пившая заявка обслуживается аппаратом первой фазы (первым оператором), затем передается на дальнейшее обслуживание во вторую фазу (следующему операто­ру) и т. д.

Применение аппарата теории массового обслужи­вания позволяет учесть ряд специфических особеннос­тей, характерных для деятельности оператора и обуслов­ленных представлением его в качестве обслуживающего аппарата. Так, например, ограниченность объема опера­тивной памяти заставляет рассматривать СМО с ограни­ченной длиной очереди, а ограниченность длительности сохранения информации в памяти — СМО с ограничен­ным временем ожидания. Групповая деятельность опе­раторов может быть учтена при рассмотрении многока­нальных или многофазных СМО в зависимости от вида взаимодействия операторов.

Возможность совершения ошибок оператором и их исправления приводит к необходимости рассмотрения СМО с ненадежным обслуживающим аппаратом. При этом ошибки оператора рассматриваются как поток отказов обслуживающего аппарата, а время их исправ­ления — как время восстановления.

Применение теории массового обслуживания по­зволяет решить многие вопросы организации деятель­ности человека-оператора. К их числу относится опре­деление необходимого числа операторов, определение требований к уровню подготовленности оператора (обученности, скорости реакций, объему памяти и т.д.), определение допустимой плотности потока сигналов, поступающих к оператору, решение некоторых задач организации взаимодействия операторов. Представля­ется возможность вычисления вероятностей различных состояний системы «человек-машина». Следовательно, так же как и теория информации, теория массового обслуживания дает количественные методы описания деятельности человека-оператора.

К сожалению, применение методов теории массо­вого обслуживания для построения моделей деятель­ности оператора также связано с целым рядом трудно­стей. Основная из них определяется введением целого ряда ограничений относительно вида входящего пото­ка заявок и закона распределения времени обслужи­вания. Входящий поток на практике часто отличается от простейшего, а закон распределения времени об­служивания — от экспоненциального. Другая труд­ность связана с тем, что в теории массового обслужи­вания не учитывается качественная, содержательная сторона обслуживания. Для оценки качества обслужи­вания необходимо дополнительно применять другие методы.

Эти трудности ограничивают область применения аналитических методов теории массового обслужива­ния. Однако так же, как для теории информации, это не должно являться причиной для полного отказа от применения этих методов в инженерной психологии. Условия их применения здесь сводятся к следующему:

• поступающая к оператору информация должна допус­кать интерпретацию ее в терминах входящего потока зая­вок;

• входящий поток и время обслуживания должны подчи­няться определенным законам распределения;

• входящий поток должен быть однородным, в противном случае должно быть возможным разделение его на одно­родные группы (по срочности, важности, затратам на об­служивание и т. п.);

• для отражения динамического характера процесса обслу­живания должна быть установлена система критериаль­ных временных функций, позволяющая оценить эффек­тивность СМО на нестационарных режимах работы.

При соблюдении этих условий возможно приме­нение методов теории массового обслуживания для анализа деятельности оператора в СЧМ [70, 113, 155, 162,168].

Для построения математических моделей деятель­ности-оператора в системах непрерывного типа (транс­портные средства: самолет, автомобиль, корабль; систе­мы, в которых оператор выполняет функции слежения или наведения; системы регулирования параметров, работающие с участием человека, и т. п.) могут приме­няться методы теории автоматического управления (ТАУ). С позиций ТАУ человек-оператор рассматрива­ется как элемент следящей системы, какой представ­ляется в данном случае система «человек-машина». На работу системы влияют динамические связи элемен­тов системы друг с другом и человеком.

Процесс анализа системы состоит из трех этапов:

• установление критерия поведения замкнутой системы и определение ее передаточной функции;

• нахождение такой передаточной функции оператора, ко­торая позволила бы получить требуемую функцию всей системы;

• проведение системы мероприятий (отбор, тренировка операторов, соответствующее оформление технической части СЧМ), обеспечивающих требуемую функцию опе­ратора.

При решении этих задач необходимо учитывать следующие психофизиологические особенности чело­века: ограниченность полосы пропускания, одноканальность, недостаточную точность работы, неста­бильность коэффициента усиления, внесение помех и т. п. Как правило, учесть все эти особенности быва­ет трудно, поэтому на практике используют лишь упрощенные модели деятельности оператора. Одной из них является линейная модель, структурная схемаее показана на рис. 8.7. На этой схеме оператор пред­ставляется в виде трех последовательно соединенных звеньев. Первое звено осуществляет прием сигналов; по своим динамическим свойствам оно является уси­лительным звеном с запаздыванием. Второе звено — решающее (вычислительное). При достаточной трени­ровке, отсутствии возмущающих воздействий и мини­мальной психофизиологической напряженности опера­тора это звено представляет собой обычный усилитель. Третье звено оператора — исполнительное. По своим свойствам оно является инерционным звеном.

 

Рис. 8.7. Структурная схема линейной модели.

Общая передаточная функция такой модели опе­ратора может быть записана как произведение пере­даточных функций отдельных звеньев

(8.11)

где k = k1k2k3 — коэффициент усиления оператора; t1 — время реакции оператора, равное в среднем 0,2 с; t2 — постоянная времени, характеризующая инерцию (примерно 0,125 с) в образовании исполнительного дей­ствия.

Наиболее важным недостатком существующих мо­делей, основанных на использовании аппарата ТАУ, является их линейность. Между тем хорошо известно, что человек-оператор является сугубо нелинейным зве­ном следящей системы. Для удовлетворительного опи­сания деятельности оператора с учетом этого замеча­ния необходимо применение градиентных методов.

Глава IX. ИМИТАЦИОННЫЕ МЕТОДЫ

9.1. Физическая (психологическая) имитация деятельности оператора

Широкое место в арсенале методов инженерной психологии занимают имитационные методы. Выделе­ние их в отдельную группу является несколько услов­ным, поскольку их в ряде случаев трудно отделить от психологических или математических методов. В то же время, как указывалось в главе V, этим методам при­сущи специфические особенности, что и позволяет, хотя бы и условно, выделить имитационные методы в осо­бую группу.

В самом общем плане имитация (от лат. imitatio — подражание, подделка) может быть определена как воспроизведение характеристик некоторой системы, ситуации, события или явления в обстановке, отлич­ной от той, в которой протекает реальная деятельность оператора [ 105]. Средства, с помощью которых может быть достигнуто это воспроизведение, могут быть фи­зическими или символическими (в частности, цифро­выми). физическая имитация может быть такой точ­ной, что ее бывает трудно отличить от оригинала, который она имитирует. Примером этого могут быть различного рода военные учения. Символическая имитация может быть достаточно полной копией про­текающих в оригинале процессов, но наглядного сход­ства с ним в этом случае обычно не бывает. Примером этого является моделирование реальных процессов методом статистических испытаний (метод Монте-Карло).

Имитация деятельности оператора (грудам опера­торов) может быть частичной или полной. Физическая имитация, как правило, имеет частичный характер, по­скольку, хотя физические характеристики процесса или системы можно воспроизвести достаточно полно, опе­ративные условия деятельности не поддаются такому полному воспроизведению. При полной имитации ха­рактеристики системы, окружающей среды вместе с их входными сигналами и ответными реакциями пред­ставлены символически, посредством математических выражений. Все операции этой математической сис­темы выполняются вычислительной машиной с помо­щью метода статистических испытаний [105]. При этом различают аналитическое имитационное моделирова­ние и статистическое имитационное моделирование [137]. Их особенности и основные отличия будут рас­смотрены ниже.

Помимо рассмотренного, А.И. Нафтульев предла­гает различать динамическую и цифровую имитацию. Первая протекает в реальном, вторая в ускоренном масштабе времени. Основное отличие динамической имитации от цифровой заключается в основном в том, что в первом случае человек как бы непосредственно выполняет (имитирует) свои функции, а во втором — основные его функции имитируются с помощью ЭВМ. Подытоживая все сказанное следует отметить, что фи­зическая имитация обычно носит частичный характер и осуществляется в реальном масштабе времени; сим­волическая имитация, напротив, может носить более полный характер и протекает в ускоренном масштабе времени.

Важнейшей формой физической имитации являет­ся деловая игра. Она представляет метод имитации управленческих и деловых ситуаций путем игры по заданным правилам человека (группы людей) и ЭВМ. Деловая игра является формой воссоздания предмет­ного и социального содержания профессиональной деятельности, моделирования систем отношений, ха­рактерных для данного вида практики. Проведение деловой игры представляет собой развертывание осо­бой (игровой) деятельности участников на имитацион­ной модели, воссоздающей условия и динамику произ­водства. В зависимости от того, какой тип человеческой практики воссоздается в игре и каковы цели участников, различают деловые игры учебные, исследователь­ские, управленческие, аттестационные. Деловые игры получили широкое распространение в связи с задача­ми по совершенствованию управления, принятия пла­новых и производственных решений, подготовки и повышения квалификации кадров. Учебная деловая игра позволяет задать в обучении предметный и соци­альный контексты будущей профессиональной дея­тельности и тем самым смоделировать более адекват­ные по сравнению с традиционным обучением условия формирования личности специалиста. В этих условиях усвоение нового знания накладывается на канву буду­щей профессиональной деятельности; обучение при­обретает совместный, коллективный характер; форми­рование специалиста осуществляется в результате подчинения двум типам норм: нормам компетентных предметных действий и нормам отношений в группо­вой деятельности. Мотивация, интерес и эмоциональ­ный статус участников деловой игры обусловливаются широкими возможностями для целеполагания и целеосуществления, диалогического общения на материа­ле проблемно представленного содержания деловой игры. В инженерной психологии деловые игры широ­ко применяются для подготовки операторов энергоси­стем, в психологии управления — для подготовки раз­личного рода управленческих кадров.

Рассмотрим более подробно на конкретных при­мерах возможные случаи применения деловых игр для решения указанных задач.

В работе [197] обоснована необходимость форми­рования оперативных навыков и умений — заключи­тельного этапа подготовки операторов энергоблоков — посредством деловых (оперативных) игр. Для этого в оперативной деятельности персонала энергоблоков было выделено игровое начало, найден подлинный соревновательный элемент. Например, обучаемому поручалась роль энергоблока, и он должен был пра­вильно реагировать на управляющие действия друго­го обучаемого. Или один из игроков «изобретает ава­рию», а другой игрок — устраняет отказы. Помимо этого разработаны сценарии для проведения оператив­ных игр при возникновении тех или иных ситуаций в технологическом процессе.

Это позволило создать не просто игровую обучаю­щую систему, но прежде всего — игровую тренирую­щую систему. Данный аспект является принципиаль­но важным, так как позволяет ликвидировать разрыв между знаниями и умениями, между обучением и тре­нировкой. Тренирующее качество именно и достигну­то посредством оперативных игр. Для решения этих задач разработано несколько разновидностей таких игр: ситуационные (наблюдение, диагностика, планирова­ние), координационные (взаимодействие с автомати­кой), противоаварийные.

Рассмотрение особенностей проведения таких игр обсудим для случая диагностики [197]. ЭВМ задает исходные условия и предлагает обучаемому указать вид игры (стандартная, усложненная, ускоренная и облегченная). Допустим, выбрана усложненная игра. От обучаемого требуется в этом случае показать пони­мание технологической ситуации и ее многомерности. Затем ЭВМ просит обучаемого найти причину откло­нения. В случае правильной диагностики в рамках за­данного лимита времени ЭВМ фиксирует победу обу­чаемого.

Если же правильное решение принято с опоздани­ем, машина разрешает продолжить игру с добавкой времени. Отказ от добавки ведет к фиксации проигры­ша и повтору игры для другой ситуации; согласие на дополнительное время увеличивает штрафные очки, что не ведет к чистой победе, но и не исключает ничью. К ничьей ведет также правильное решение, принятое вовремя, но с помощью ЭВМ. Проигрыш фиксируется в случае ошибки обучаемого. От проигрыша следует отличать поражение, которое засчитывается обучаемо­му, если он принял ошибочное решение, отягощенное просрочкой времени, невзирая на помощь. Поражение вводит в действие дополнительные игры. Они делятся на две группы: игры с признаками и игры с причина­ми (табл. 9.1).

Таблица 9.1

Дополнительные игры

Из игр с признаками особенно существенной яв­ляется игра «Найти приборы». Речь идет о проверке «прочности» связей между наименованиями признака и его индикаторами. В каждой группе дополнительных игр предусмотрены взаимные переходы. Что касается игр с причинами, то здесь особенно интересна игра «Очистить». Проведенные эксперименты с оператора­ми электростанций показали особую трудность указан­ной фильтрации даже для опытных операторов. Игра состоит в максимально быстром выделении ложных причин, причем количество баллов, получаемых игро­ком, тем больше, чем выше правдоподобие ложной причины [197].

Как уже отмечалось ранее, деловые игры находят широкое применение и при отработке управленческих решений по инженерно-психологическому (эргоно­мическому) обеспечению новых образцов техники. Один из вариантов такой игры описан в [199]. В ней моделируется организация взаимодействия предпри­ятия промышленности (заказчика) и разработчика по организации работ по инженерно-психологическому (эргономическому) обеспечению разработки, испыта­ний и внедрению новой техники.

Из рассмотренных примеров видно, что физичес­кое имитационное моделирование, осуществляемое в форме деловых и учебных игр, направлено не только на исследование и изучение оперативной и управлен­ческой деятельности, но и на обучение и тренировку оперативного и управленческого персонала, отработ­ку ими соответствующих навыков и умений. В этом плане деловые игры выступают не столько как элемент исследовательской деятельности, сколько они являют­ся одной из форм обучения и тренировок персонала.

9.2. Цифровая (статистическая) имитация деятельности оператора

Рассмотренные ранее методы в ряде случаев не могут быть использованы для изучения и анализа де­ятельности оператора. Укажем некоторые из этих слу­чаев.

1. Применение математических методов в процессе проектирования СЧМ, как правило, позволяет лишь приближенно оценивать деятельность оператора, поскольку эти методы не позволяют учесть целый ряд особенностей деятельности оператора. Попыт­ки учета этих особенностей приводят к существен­ному усложнению модели. При этом может получить­ся, что аналитическое решение задачи оказывается либо принципиально невозможным, либо связанным с большими теоретическими и вычислительными трудностями.

2. Применение экспериментальных методов в про­цессе испытаний и эксплуатации СЧМ также не всегда оказывается возможным. Это может быть связано с опасностью для здоровья или жизни людей, невозможностью экспериментального вос­произведения некоторых ситуаций, с большой сложностью или стоимостью эксперимента.

В этих случаях весьма полезные результаты дает применение статистического моделирования. Оно ба­зируется на методе статистических испытаний (метод Монте-Карло). Метод основан на розыгрыше (имита­ции) воздействия случайных факторов на деятельность оператора и функционирование СЧМ непосредствен­но в ходе моделирования. Этим объясняется другое название метода — имитационное моделирование.

Смысл метода заключается в многократной реа­лизации с помощью ЭВМ моделируемого процесса. Каждая реализация носит случайный характер. Дос­товерность окончательного решения достигается ста­тистической обработкой промежуточных результатов по множеству реализации.

Из этого следует, что имитационные методы зани­мают промежуточное положение между эксперимен­тальными и математическими методами. По способу получения данных о деятельности оператора метод является математическим, а по характеру их получе­ния и использования он копирует экспериментальный метод. Поэтому имитационные методы называют так­же машинным или математическим экспериментом.

Применение имитационных методов позволяет избежать многих недостатков экспериментальных и математических методов. С одной стороны, имитацион­ные методы позволяют получить сравнительно высо­кую достоверность результатов моделирования уже на ранних этапах проектирования СЧМ. С другой сторо­ны, по выражению академика В.М. Глушкова, матема­тический эксперимент работает и в тех случаях, когда эксперименты с реальными объектами сильно затруд­нены, а порой и вовсе невозможны [29]. Кроме того, в ряде случаев его стоимость может оказаться гораздо ниже, чем стоимость эксперимента.

В настоящее врем





Поделиться с друзьями:


Дата добавления: 2016-12-05; Мы поможем в написании ваших работ!; просмотров: 1255 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Самообман может довести до саморазрушения. © Неизвестно
==> читать все изречения...

859 - | 711 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.011 с.