Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Основные законы распределения случайных величин.




На первый взгляд может показаться, что для задания дискретной случайной величины достаточно перечислить все ее возможные значения. В действительности это не так: случайные величины могут иметь одинаковые перечни возможных значений, а вероятности их — различные. Поэтому для задания дискретной случайной величины недостаточно перечислить все возможные ее значения, нужно еще указать их вероятности.

Законом распределения дискретной случайной величины называют соответствие между возможными значениями и их вероятностями; его можно задать таблично, аналитически (в виде формулы) и графически.

При табличном задании закона распределения дискретной случайной величины первая строка таблицы содержит возможные значения, а вторая — их вероятности:

X xt xt... хп

Р Pi Pt '•• Рп

Приняв во внимание, что в одном испытании случайная величина принимает- одно и только одно возможное значение, заключаем, что события X — xlt X = xa,..., X = хп образуют полную группу; следовательно, сумма вероятностей этих событий, т. е. сумма вероятностей второй строки таблицы, равна единице:

Если множество возможных значений X бесконечно (счетно), то ряд р1-\-р1 +... ходитсяс и его сумма равна единице.

Пример. В денежной лотерее выпущено 100 билетов. Разыгрывается один выигрыш в 50 руб. и десять выигрышей по 1 руб. Найти закон распределения случайной величины X — стоимости возможного выигрыша для владельца одного лотерейного билета'. Решение. Напишем возможные значения X: *1 = 50, хг—\, х3 = 0. Вероятности этих возможных значений таковы: р1 = 0,01, р„ = 0,01, Рз=1-(р1 + Р4)=0,89.

Напишем искомый закон распределения:

X 50 10 0

р 0,01 0,1 0,89

14. Система двух непрерывных случайных величин: функция распределения и ее свойства, функции распределения случайных величин, входящих в систему.

Как уже отмечалось, дискретная случайная величина может быть задана перечнем всех ее возможных значений и их вероятностей. Такой способ неприменим для непрерывных случайных величин, так как невозможно составить перечень всех возможных значений, заполняющих интервал (a,b). В связи с этим вводится понятие функции распределения вероятностей случайной величины, пригодное как для дискретной, так и для непрерывной случайной величины.

Пусть x – действительное число. Вероятность события, состоящего в том, что X примет значение, меньшее x, т.е. вероятность события , обозначим через . Разумеется, если x изменяется, то, вообще говоря, изменяется и , т.е. есть функция x.

Функцией распределения называют функцию , определяющую вероятность того, что случайная величина X в результате испытания примет значение, меньшее x:

 

 

Геометрически это равенство можно истолковать так: есть вероятность того, что случайная величина примет значение, которое изображается на числовой оси точкой, лежащей левее x.

Рассмотрим по-отдельности случаи дискретной и непрерывной случайной величин.

1. Дискретная случайная величина. Рассмотрим функцию распределения дискретной случайной величины , принимающей значения .

ü Если , то , так как в этом случае событие является невозможным.

ü Если , то событие наступит тогда и только тогда, когда наступит событие , поэтому .

ü Если , то событие равно сумме событий и и

.

ü Аналогично, если , то .

Таким образом, функция распределения случайной дискретной величины равна , где , и суммирование производится по тем , для которых .

Таким образом, в точках функция распределения испытывает скачки.

2. Непрерывная случайная величина. В отличие от случая дискретной случайной величины в данном случае пробегает все непрерывное множество значений, а сама функция возрастает монотонно.

Если вероятность события равна , а вероятность события равна , то вероятность того, что случайная величина заключена между и равна разности соответствующих значений функции распределения: .

Вероятность того, что непрерывная случайная величина X примет одно определенное значение, равна нулю. Имеет смысл рассматривать лишь вероятность попадания ее в некоторый интервал, пусть даже и сколь угодно малый.

График функции распределения для дискретной случайной величины представляет собой ступенчатую разрывную функцию, а непрерывной –монотонно возрастающую непрерывную функцию.

Пример. Пусть среднедушевой доход в у.е. описывается функцией распределения

 

 

где . Какова вероятность того, что в случайно выбранной семье среднедушевой доход меньше 200 у.е.? Вероятность того, что среднедушевой доход лежит в пределах от 50 до 150 у.е.? Ответ: а) , б) 0,534.






Поделиться с друзьями:


Дата добавления: 2016-12-05; Мы поможем в написании ваших работ!; просмотров: 534 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Студент всегда отчаянный романтик! Хоть может сдать на двойку романтизм. © Эдуард А. Асадов
==> читать все изречения...

2431 - | 2176 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.012 с.