Лекции.Орг


Поиск:




Повторные независимые испытания. Формула Бернулли.




При решении вероятностных задач часто приходится сталкиваться с ситуациями, в которых одно и тоже испытание повторяется многократно и исход каждого испытания независим от исходов других. Такой эксперимент еще называется схемой повторных независимых испытаний или схемой Бернулли.

Примеры повторных испытаний:

1) многократное извлечение из урны одного шара при условии, что вынутый шар после регистрации его цвета кладется обратно в урну;

2) повторение одним стрелком выстрелов по одной и той же мишени при условии, что вероятность удачного попадания при каждом выстреле принимается одинаковой (роль пристрелки не учитывается).

Итак, пусть в результате испытания возможны два исхода: либо появится событие А, либо противоположное ему событие. Проведем n испытаний Бернулли. Это означает, что все n испытаний независимы; вероятность появления события $А$ в каждом отдельно взятом или единичном испытании постоянна и от испытания к испытанию не изменяется (т.е. испытания проводятся в одинаковых условиях). Обозначим вероятность появления события $А$ в единичном испытании буквой $р$, т.е. $p=P(A)$, а вероятность противоположного события (событие $А$ не наступило) - буквой $q=P(\overline{A})=1-p$.

Тогда вероятность того, что событие А появится в этих n испытаниях ровно k раз, выражается формулой Бернулли

Pn (k)= Cknpkqnk, q =1− p.

Распределение числа успехов (появлений события) носит название биномиального распределения.

10. Понятие случайной величины. Функция распределения случайной величины и её свойства.

Пусть имеется пространство элементарных событий U, на нем построено поле событий и для каждого события А из этого поля определена вероятность Р(А). Каждому элементарному событию gi из U сопоставим число ξi. Потребуем, чтобы для любого х (-∞ < x < +∞) множество А тех g, для которых ξ < x, принадлежало полю событий, т.е. для него определена вероятность Р{ξ < x} = P(A) = F(x). Тогда ξ называется случайной величиной , а F(x) - ее функцией распределения

Свойства функции распределения:

  1. F(-∞) = 0
  2. F(+∞) = 1
  3. F(x) - не убывающая функция х

Случайные величины могут быть непрерывными, т.е. принимать любые значения в некотором интервале (например, упомянутые выше температуры). У них F(x) - непрерывная функция.
Случайные величины могут быть дискретными т.е. принимать только конечное или счетное множество определенных значений (например, число очков при бросании игральной кости; число телефонных звонков, поступающих конкретному абоненту в течение суток). У таких величин F(x) имеет разрывы в точках, соответствующих принимаемым значениям. Такие величины удобнее характеризовать указанием возможных значений и их вероятностей.

Вид функций F(x), р(х), или перечисление р(хi) называют законом распределения случайной величины. Хотя можно представить себе бесконечное разнообразие случайных величин, законов распределения гораздо меньше. Во-первых, различные случайные величины могут иметь совершенно одинаковые законы распределения. Например: пусть y принимает всего 2 значения 1 и -1 с вероятностями 0.5; величина z = -y имеет точно такой же закон распределения.
Во-вторых, очень часто случайные величины имеют подобные законы распределения, т.е., например, р(х) для них выражается формулами одинакового вида, отличающимися только одной или несколькими постоянными. Эти постоянные называются параметрами распределения .

Хотя в принципе возможны самые разные законы распределения, здесь будут рассмотрены несколько наиболее типичных законов. Важно обратить внимание на условия, в которых они возникают, параметры и свойства этих распределений.

1. Равномерное распределение
Так называют распределение случайной величины, которая может принимать любые значения в интервале (a,b), причем вероятность попадания ее в любой отрезок внутри (a,b) пропорциональна длине отрезка и не зависит от его положения, а вероятность значений вне (a,b) равна 0.


Рис 6.1 Функция и плотность равномерного распределения

Параметры распределения: a, b

2. Нормальное распределение
Распределение с плотностью, описываемой формулой

(6.1)

называется нормальным. (Рисунок 6.2)
Параметры распределения: a, σ


Рисунок 6.2 Типичный вид плотности и функции нормального распределения

3. Распределение Бернулли
Если производится серия независимых испытаний, в каждом из который событие А может появиться с одинаковой вероятностью р, то число появлений события есть случайная величина, распределенная по закону Бернулли , или по биномиальному закону (другое название распределения).

(6.2)

Здесь n - число испытаний в серии, m - случайная величина (число появлений события А), Рn(m) - вероятность того, что А произойдет именно m раз, q = 1 - р (вероятность того, что А не появится в испытании).

Пример 1: Кость бросают 5 раз, какова вероятность того, что 6 очков выпадет дважды?
n = 5, m = 2, p = 1/6, q = 5/6

Параметры распределения: n, р

4. Распределение Пуассона
Распределение Пуассона получается как предельный случай распределения Бернулли, если устремить р к нулю, а n к бесконечности, но так, чтобы их произведение оставалось постоянным: nр = а. Формально такой предельный переход приводит к формуле

11. Плотность распределения случайной величины и её свойства.

Случайной величиной называется величина, которая в результате опыта может принять то или иное значение, причем неизвестно заранее, какое именно.

Примеры случайных величин:

1) число попаданий при трех выстрелах;

2) число вызовов, поступавших на телефонную станцию за сутки;

3) частота попадания при 10 выстрелах.

 

Плотность распределения одномерной случайной величины

Случайная величина X называется абсолютно непрерывной

в точке x, если её функция распределения F (x) дифференцируема.

Предел , если он существует и конечен, называется плотностью распределения случайной величины и обозначается p (x), т.е.

Отметим свойства функции ρ (x).

1. ρ (x) 0 как производная от неубывающей функции.

2. Справедлива формула:

Действительно, из формулы следует, что функция

F _ (x) является первообразной для функции ρ (x), а потому b

a ρ (x) dx = F (b) − F (a), но из при x 1 = a, x 2 = b получаем, что F (b) − F (a) = P (a ≤ X < b), и формула доказана.

3.

(условие нормировки). Этот интеграл

определяет вероятность достоверного события

A{−∞ < X < + ∞}.

4. Функции F (x) и ρ (x) связаны соотношением

Действительно, по определению F (x) имеем, что

F (x) = P (−∞ <X < x},

а из формулы при a = −∞, b = x следует, что

и свойство 4 доказано.

5. C точностью до бесконечно малых выше первого порядка

малости относительно Δ x, имеет место

Справедливость этого свойства следует из выражения

 





Поделиться с друзьями:


Дата добавления: 2016-12-05; Мы поможем в написании ваших работ!; просмотров: 706 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Два самых важных дня в твоей жизни: день, когда ты появился на свет, и день, когда понял, зачем. © Марк Твен
==> читать все изречения...

772 - | 704 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.011 с.