Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Наиболее распространенные законы распределения непрерывных случайных величин




1. Равномерное распределение на отрезке (для краткости говорят: X подчиняется закону ) (см. рис.):

(6)

Равномерное распределение реализуется в экспериментах, в которых наудачу ставится точка на отрезке (Х – абсцисса поставленной точки), а также в экспериментах по измерению тех или иных величин с округлением (Х – ошибка округления).

 

 

 

 

 

 
 


0

2. Показательное (экспоненциальное) распределение с параметром l (для краткости говорят: Х подчиняется закону ):

(7)

Показательное распределение часто встречается в теории массового обслуживания (например, Х – время ожидания при техническом обслуживании или Х – длительность телефонных разговоров, ежедневно регистрируемых на телефонной станции) и в теории надежности (например, Х – срок службы радиоэлектронной аппаратуры).

3. Нормальный закон распределения. Случайная величина назы­вается распределенной по нормальному (гауссовскому) закону с парамет­рами и > 0 если плотность распределения вероятностей имеет вид (см. рис.)

(8)

Параметры и совпадают с основными характеристиками распределения:

Для краткости говорят, что случайная величина Х распределена по закону

N (т, ), если ее плотность вероятностей записывается в виде (8). Если Х распределена по закону , то она называется стандартизованной нормальной величиной. Функция распределения стандартизованной гауссовской величины имеет вид:

(9)

С ее помощью можно вычислять интервальные вероятности для нормального распределения N (т, ):

(10)

Функцию распределения можно записать в виде , где - функция Лапласа. Имеются таблицы значений этой функции.

Для вероятности попадания на симметричный относительно математического ожидания интервал справедлива формула

(11)

В частности, , , (т. е. практически достоверно, что принимает свои значения в промежутке («правило трех сигм»)).

Центральные моменты нормального распределения удовлетворяют рекуррентному соотношению

Отсюда следует, что все центральные моменты нечетного порядка для нормального распределения равны нулю (т. к. ).

 

Пример. Случайная величина X подчиняется закону распределения Парето с параметрами > 0 и > 0, если она непрерывного типа и её функция распределения вероятностей имеет вид

(12)

Найти , , для распределения Парето, выразив их через параметры распределения.

◄ Находим плотность распределения вероятностей

 

Математическое ожидание вычисляем по формуле для случая непрерывной случайной величины:

Очевидно, математическое ожидание существует, если существует несобственный интеграл с бесконечным пределом, т. е. при > 1. В этом случае, вычисляя интеграл, получим

Для вычисления дисперсии используем формулу . Найдем второй начальный момент: (). Отсюда

().

Медиану находим как корень уравнения откуда

 





Поделиться с друзьями:


Дата добавления: 2016-12-05; Мы поможем в написании ваших работ!; просмотров: 363 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Свобода ничего не стоит, если она не включает в себя свободу ошибаться. © Махатма Ганди
==> читать все изречения...

2338 - | 2092 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.015 с.