Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Тема 11. Неопределенный интеграл




 

Понятие первообразной и неопределенного интеграла. Свойства неопределенного интеграла (с доказательством). Таблица основных интегралов. Интегрирование методом разложения, замены переменной и по частям. Понятие о «неберущихся» интегралах ([1 или 6, § 10.1 – 10.5, 10.8]; [2 или 6, § 10.1 – 10.3, 10.5], или [3, § 10.1 – 10.6, 10.9 – 10.11], или [5, §6.1 – 6.6, 6.9 – 6.11]).

Следует обратить внимание на то, что интегрирование вводится как операция, обратная дифференцированию, но в отличие от последнего приводит к неоднозначному результату: для любой непрерывной функции f (x) имеется бесконечное множество первообразных. Они отличаются друг от друга лишь на постоянное слагаемое.

Доказательства основных свойств неопределенного интеграла получены исходя из определения первообразной. Правильность интегрирования можно проверить дифференцированием; этот прием следует использовать для проверки решения соответствующих примеров в контрольной работе.

Под непосредственным интегрированием понимают нахождение неопределенного интеграла путем преобразования его к табличному с помощью основных правил интегрирования и тождественных преобразований подынтегральной функции.

Обратите внимание на свойство, связанное с линейным преобразованием аргумента ([1 или 6, формула (10.17)] или [3, формула (10.19)]), так как это простейшее из свойств, которое часто применяется при непосредственном интегрировании. Используя его, можно свести к табличным ряд интегралов.

Метод подстановки, или метод замены переменной, – один из основных приемов интегрирования функций. Следует обратить внимание на то, что можно использовать подстановки двух видов:

а) переменная интегрирования x заменяется функцией переменной t:

а

;

б) новая переменная t вводится как функция переменной интегрирования x:

.

Последнюю подстановку удобно применять, если подынтегральное выражение содержит дифференциал (производную) функции с точностью до постоянного множителя.

Если интеграл, полученный после замены переменной, стал «проще» данного (преобразован в табличный или приводящийся к табличному), то цель подстановки достигнута.

После интегрирования функции по переменной t необходимо вернуться к прежней переменной x, выразив t через x по формуле, применявшейся при подстановке.

Примеры различных подстановок даны в ([1, или 6, или 3, § 10.3, 10.6]).

Практическое применение формулы интегрирования по частям ([1 или 6, или 3, § 10.4]), если оно целесообразно, связано с проблемой правильного разбиения подынтегрального выражения на сомножители u и dv. Отметим, что формулу интегрирования по частям, как правило, удобно применять, если подынтегральная функция является произведением многочлена на показательную или логарифмическую функцию ([1 или 6, примеры 10.10 – 10.13]; [3, примеры 10.8, 10.9]).

 

 





Поделиться с друзьями:


Дата добавления: 2016-12-04; Мы поможем в написании ваших работ!; просмотров: 384 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Два самых важных дня в твоей жизни: день, когда ты появился на свет, и день, когда понял, зачем. © Марк Твен
==> читать все изречения...

2253 - | 2076 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.01 с.