Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Тема 8. Приложения производной




 

Теорема Ролля* и Лагранжа. Правило Лопиталя (без вывода). Признаки возрастания и убывания функции. Экстремум функции. Необходимые и достаточные признаки экстремума (второй достаточный признак – без доказательства). Наибольшее и наименьшее значения функции на отрезке; их нахождение; решение задач. Исследование функции (область определения, четность и нечетность, интервалы монотонности и точки экстремума, поведение функции при и в точках разрыва, вертикальные, горизонтальные и наклонные асимптоты, точки пересечения графика с осями координат) и построение ее графика. Квадратичная функция y = ax2 + bx + c и ее график. Дробно-линейная функция y = (ax + b)/(cx + d) и ее график ([1 или 6, § 8.1 – 8.5, 8.7 – 8.9]; [2 или 7, § 8.1 – 8.3, 8.5], или [3, § 8.1 – 8.5, 8.7, 8.8, 8.10 – 8.12, 8.14], или [5, §4.1 – 4.5, 4.7, 4.8, 4.10 – 4.12, 4.14])

Одно из простейших приложений производной – раскрытие неопределенностей вида [0/0] или с помощью правила Лопиталя ([1, или 6, или 3, § 8.2]). Обратите внимание на то, что согласно формуле (8.3) предел отношения двух бесконечно малых или двух бесконечно больших функций равен пределу отношения их производных, а не пределу производной частного этих функций.

Теоремы дифференциального исчисления являются обоснованием такой важной области приложения производных, как исследование функций. Студенты должны знать формулировки этих теорем, четко различая в них условие и заключение.

В учебнике приведена схема исследования функции для нахождения ее характерных точек и особенностей, по которым можно построить ее график ([1, или 6, или 3, § 8.8]). Выполнение пункта 60 этой схемы, связанного с нахождением интервалов выпуклости функции и точек перегиба, не обязательно.

 

 

Тема 9. Дифференциал функции

 

Понятие дифференциала функции. Геометрический смысл дифференциала. Свойства дифференциала. Инвариантность формы дифференциала первого порядка. ([1или 6, § 9.1, 9.2]; [2 или 7, гл. 9]; [3, § 7.7 – 7.9, 7.13] или [5, §3.7 – 3.9, 3.13]).

Дифференциал функции y = f (x) – главная, линейная (относительно приращения Δ x аргумента) часть приращения функции – равен произведению производной на дифференциал независимой переменной, т.е. dy = (x) dx. Геометрический смысл дифференциала рассмотрен в ([1 или 6, § 9.1] или [3, § 7.4]).

Операция нахождения дифференциала сводится к нахождению производной и также называется дифференцированием функции.

Важное свойство дифференциала первого порядка – инвариантность его формы (или формулы). Это означает, что дифференциал функции

y = f (u) есть dy = (u) du и не зависит от того, является ли u независимой переменной или функцией. Свойство инвариантности формы дифференциала используется далее в интегральном исчислении.

 





Поделиться с друзьями:


Дата добавления: 2016-12-04; Мы поможем в написании ваших работ!; просмотров: 397 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Своим успехом я обязана тому, что никогда не оправдывалась и не принимала оправданий от других. © Флоренс Найтингейл
==> читать все изречения...

2377 - | 2186 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.009 с.