Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Краткие теоретические сведения. Квадратной матрицей порядканазывается квадратная таблица из чисел (, ):, состоящая из строк и




Тема 1. Определители.

Квадратной матрицей порядка называется квадратная таблица из чисел (, ): , состоящая из строк и столбцов. У квадратной матрицы различают главную диагональ: и побочную диагональ: . Любой квадратной матрице порядка можно поставить в соответствие число , равное алгебраической сумме слагаемых, составленных определённым образом из элементов матрицы ,называемое определителем матрицы. Кратко обозначается , .

Определителем 1-ого порядка называется число .

Определителем 2-ого порядка называется число

.

Определителем 3-его порядка называется число

.

Минором элемента называется определитель , полученный из определителя вычёркиванием -ой строки и -ого столбца.

Алгебраическим дополнением элемента называется его минор , взятый со знаком :

.

Определителем порядка называется число

Разложением определителя по -ой строке () называется соотношение: .

Разложением определителя по -ому столбцу () называется соотношение:

Определители обладают следующими свойствами:

1) определитель не изменится при замене всех его строк столбцами с теми же номерами;

2) определитель изменит знак на противоположный, если переставить местами любые две строки (два столбца) определителя;

3) общий множитель элементов какой-либо строки (столбца) можно вынести за знак определителя;

4) определитель равен нулю, если он содержит нулевую строку (столбец), две одинаковые или пропорциональные строки (столбца);

5) определитель не изменится, если к какой-либо строке (столбцу) прибавить другую строку (столбец), умноженную на любое число;

6) определитель треугольного вида (когда все элементы, лежащие по одну сторону одной из его диагоналей равны нулю) равен произведению диагональных элементов: .

Тема 2. Матрицы.

Матрицей размера называется прямоугольная таблица из чисел (, ): , состоящая из строк и столбцов. Если необходимо указать размеры матрицы, то пишут .

Если , то матрица называется квадратной.

Нулевой называется матрица , все элементы которой равны нулю, например: . Единичной называется квадратная матрица , на главной диагонали которой стоят единицы, а все остальные элементы равны нулю, например: . Треугольной называется квадратная матрица , все элементы которой расположенные по одну сторону от главной диагонали равны нулю, например: . Трапециевидной (ступенчатой) назовём матрицу , все элементы которой, расположенные ниже элементов равны нулю, например: .

Матрицы и называются равными и пишут , если они одинакового размера и их соответствующие элементы равны: , , .

Матрицы можно транспонировать, складывать, вычитать, умножать на число, умножать на другую матрицу.

Транспонированной к матрице называется матрица , столбцами которой являются соответствующие строки матрицы .

Суммой (разностью) матриц и одного размера , называется матрица того же размера, для которой:

, , .

Произведением матрицы размера на число называется матрица того же размера, для которой: , , .

Произведением матрицы на матрицу называется матрица , каждый элемент которой вычисляется по правилу:

, , .

Операция умножения матрицы на матрицу определена не для всех матриц, а только для таких у которых число столбцов левой матрицы равно числу строк правой матрицы . Такие матрицы называются согласованнымидля умножения. Поэтому прежде чем выполнять данную операцию следует: 1) проверить их согласованность для умножения; 2) определить размерность матрицы-произведения: . Особенность операции умножения матриц состоит в том, что в общем случае: ..

Элементарными преобразованиями матрицы называются:

1) перестановка строк (столбцов);

2) умножение строки (столбца) на число, отличное от нуля;

3) прибавление к элементам строки (столбца) соответствующих элементов другой строки (столбца), умноженных на любое число;

4) вычёркивание нулевой строки (столбца).

Матрицы и , полученные одна из другой в результате элементарных преобразований называются эквивалентными и пишут .

Обратной к квадратной матрице порядка , называется матрица того же порядка, если: , где - единичная матрица порядка .

Квадратная матрица называется невырожденной, если её определитель . Обратная матрица всегда существует для невырожденных матриц.

Одним из методов вычисления обратной матрицы является:

Метод присоединённой матрицы. Если -невырожденная матрица, то , где - присоединённая матрица, для которой: , где . Здесь - алгебраические дополнения элементов матрицы .

В частности, если , то

Матричными называются уравнения вида: , , ,

где матрицы - известны, матрица - неизвестна. Если квадратные матрицы и - невырожденные, то решения матричных уравнений записываются, соответственно, в виде: , , .

Тема 3. Системы линейных алгебраических уравнений.

…Система уравнений вида: называется системой линейных уравнений с неизвестными. Числа называются коэффициентами, - свободными членами, - неизвестными системы.

В матричной форме система имеет вид: ,

где , , . Здесь -матрица системы,

-матрица-столбец неизвестных, -матрица-столбец свободных членов.

Если , то система называется однородной, в противном случае неоднородной.





Поделиться с друзьями:


Дата добавления: 2016-11-24; Мы поможем в написании ваших работ!; просмотров: 343 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Чтобы получился студенческий борщ, его нужно варить также как и домашний, только без мяса и развести водой 1:10 © Неизвестно
==> читать все изречения...

2431 - | 2319 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.011 с.