Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Тема 5. Линии на плоскости.




Федеральное государственное автономное образовательное

Учреждение высшего образования

 

Набережночелнинский институт

Казанского (Приволжского) федерального университета»

Кафедра математики

 

 

М А Т Е М А Т И К А

 

УЧЕБНО-МЕТОДИЧЕСКИЙ КОМПЛЕКС

для студентов заочной формы обучения,

изучающих математику в течение одного года

Г. Набережные Челны


 

Цель и задачи дисциплины, её место в учебном процессе.

Математика – наука о количественных отношениях и пространственных формах. Математика является не только мощным средством решения прикладных задач, возникающих в различных областях человеческой деятельности, но и универсальным языком науки, а также неотъемлемой частью мировоззрения.

Цель преподавания дисциплины «Математика» - формирование системы базовых знаний по данной дисциплине, которая позволит будущим специалистам успешно решать в своей повседневной деятельности актуальные задачи практики, а также понимать специальную литературу, написанную современным научным языком и тем самым совершенствовать свои профессиональные навыки.

Основными задачами дисциплины являются:

- ознакомление студентов с ролью математики в современной жизни, с характерными чертами математического метода решения прикладных задач;

- обучение студентов теоретическим основам курса;

- привитие практических навыков математического моделирования реальных социально-экономических задач с использованием аппарата данного курса;

- развитие у студентов навыков творческого и логического мышления, повышение общего уровня математической культуры.

Данная дисциплина является основой при изучении многих общенаучных и специальных дисциплин. В свою очередь, для изучения данной дисциплины необходимо знание элементарной математики.

В результате изучения данной дисциплины студент должен:

- знать теоретические основы аналитической геометрии и линейной алгебры, дифференциального и интегрального исчислений, дифференциальных уравнений, теории вероятностей и математической статистики;

- уметь использовать полученные знания для решения практических задач.

Изучение дисциплины предусматривает проведение лекционных, практических занятий и самостоятельную работу студентов. В лекциях излагается содержание тем программы с учётом требований ГОС к обязательному минимуму содержания основной образовательной программы для данных специальностей. Практические занятия проводятся с целью закрепления теоретических основ курса, получения практических навыков решения математических задач. Контроль знаний осуществляется с помощью контрольной работы и итогового экзамена в конце семестра обучения.

 

Содержание и структура дисциплины.

Раздел I. Аналитическая геометрия и линейная алгебра.

Тема 1. Определители.

Определители 2-ого, 3-его, порядков, порядка n. Свойства определителей. Миноры и алгебраические дополнения. Разложение определителя по элементам строки или столбца. Вычисление определителей.

Литература: [2] – C.22-26; [4] – C.263-268.

Тема 2. Матрицы.

Определение матрицы. Виды матриц. Действия над матрицами. Базисный минор. Ранг матрицы. Обратная матрица, условие существования, способы её нахождения.

Литература: [2] –C.9-16; 26-29; [4] –C.259-263; 272-276.

Тема 3. Системы линейных алгебраических уравнений (СЛАУ).

Системы линейных алгебраических уравнений: основные понятия и определения. Матричная запись СЛАУ. Решение СЛАУ по формулам Крамера, методом Гаусса.

Литература: [2] – C.38-53; [4] – C.268-276.

Тема 4. Векторы.

Геометрические векторы, графические действия над ними. Проекция вектора. Прямоугольная декартова система координат. Радиус-вектор. Координаты вектора и точки. Действия над геометрическими векторами (сложение и вычитание; умножение на число; скалярное, векторное и смешанное произведения) в координатной форме. Условия перпендикулярности, параллельности и компланарности векторов. Решение простейших задач векторной алгебры: нахождение координат вектора, его длины и направляющих косинусов; нахождение координат точек и расстояния между ними; деление отрезка в данном отношении.

Литература: [2] – C.63-68; [4] – C.222-241.

Тема 5. Линии на плоскости.

Прямая на плоскости. Различные виды уравнений прямой. Расстояние от точки до прямой на плоскости. Угол между двумя прямыми. Условия параллельности и перпендикулярности двух прямых. Кривые 2-ого порядка на плоскости: окружность, эллипс, гипербола, парабола, их определения, канонические уравнения и форма.

Литература: [2] –C.95-119; [4] –C.34-64.

Раздел II. Введение в анализ. Дифференциальное исчисление.





Поделиться с друзьями:


Дата добавления: 2016-11-24; Мы поможем в написании ваших работ!; просмотров: 362 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Сложнее всего начать действовать, все остальное зависит только от упорства. © Амелия Эрхарт
==> читать все изречения...

2189 - | 2073 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.007 с.