Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Трехфазные электрические цепи




· Понятие о трехфазных цепях

Электроэнергию при переменном синусоидальном напряжении можно передавать как в однофазной системе, требующей двух проводов, так и в многофазных системах. По сравнению с однофазными они имеют ряд преимуществ, но более громоздкие. Практическое распространение получила трёхфазная система переменного синусоидального напряжения. Трёхфазной системой называется совокупность электрических цепей, в ветвях которых действуют три одинаковых по амплитуде синусоидальных электродвижущих сил одинаковой частоты, с фазовыми углами одна относительно другой 120°. Одной из ЭДС присвоена литера A, следующей за ней по фазе - литера B и далее – литера C:

Где угловая частота при частоте f=50 или 60 Гц. В производстве и передаче электрической энергии трёхфазная система наиболее экономична. В ней обеспечивается сравнительно простое получение вращающегося магнитного поля, используемого в большинстве двигателей переменного напряжения. Достаточно экономично решается задача преобразования переменного напряжения в постоянное. Однофазные потребители подключаются к трёхфазной сети без существенных ограничений. В настоящее время производство электрической энергии на электростанциях, передача и распределение энергии потребителям осуществляется в единых трехфазных системах-сетях. Они распространены на значительных территориях одного или нескольких государств. Такой системой является Единая энергетическая система России. Частота напряжения в ней 50 Гц. Более сложные многофазовые системы применяются в некоторых специализированных установках.

В генераторах электрических станций система трёхфазных ЭДС образуется в одинаковых обмотках, геометрические оси которых пространственно расположены под углом 120°. Они находятся в магнитном поле вращающегося ротора. В обмотках возникает ЭДС по уравнениям (1). Следует отметить, что при описании трёхфазных цепей термин “фаза” применяется в различном смысловом значении. Это наименование каждой из обмоток генератора (трансформатора). Это так же наименование одного или группы однофазных потребителей, подключенных к линиям электропередачи. В то же время - это фазовый угол в синусоидальной функции. В общем случае трёхфазная система напряжений сети представлена потребителю в четырех проводах рис. 3.1а:

Токи в линейных проводах и напряжения между ними называются линейными. Это линейные напряжения сети UАВ, UВС, UСА. Фазные напряжения сети обозначаются UА, UВ, UС - это напряжения, определяемые фазами источника. Все напряжения и токи учитываются в действующих значениях. Синусоидальные функции фазных напряжений равны по амплитуде и имеют взаимный фазовый угол 120° в той же последовательности чередования фаз, как и ЭДС. Фазные напряжения могут быть представлены как соответствующие векторы UA, UB, UC. При этом вектор UA, которому присвоен нулевой фазовый угол, принято изображать вертикально рис. 3.1б. Связь линейных и фазных напряжений между собой устанавливается уравнениями на основе второго закона Кирхгoфа:

Векторы линейных напряжений так же представлены на рис. 3.1б. Все три линейные напряжения равны и имеют взаимный фазовый угол 120°. Такая система линейных и фазных напряжений называется симметричной. Как видно из векторной диаграммы рис. 3.1б линейное напряжение равно удвоенной проекции вектора фазного напряжения под углом 30°. Значит:

Таким образом, трёхфазная система напряжений обеспечивает потребителю в четырёх проводах три линейных и три фазных напряжения. Они отличаются в √3 раз. Наиболее часто встречается система напряжений сети, указываемая как 380/220 В. Это UЛ=380 В, Uф=220 В. Расчеты токов в трёхфазных цепях при переменном синусоидальном напряжении в общем случае определены символическим методом. Выражения линейных и фазных напряжений как комплексных чисел приведены в примере (2). Применяются расчеты и в действительных числах с построением соответствующих векторных диаграмм напряжений и токов.

 

· Способы соединения отдельных фаз источников и приемников

Соединение треугольником.

При соединении фаз потребителя треугольником каждая из фаз подключается на рис. 3.2:

В схеме фазы потребители имеют активно-индуктивный характер. Нагрузка симметричная. Для расчета токов параметры сопротивления фаз должны быть заданы. Назначаются положительные направления токов. Линейных токов от источника сети к потребителю, фазных токов - по направлению приложенных к фазам потребителя напряжений сети. Соотношения для расчета фазных токов соединения треугольником:

где для каждой из фаз:

Линейные токи определяются на основе уравнений по первому закону Кирхгофа в векторной форме:

Нейтральный провод, предоставляющий потребителю фазные напряжения сети, не используется. При симметричной нагрузке Z и φ для каждой из фаз потребителя одинаковы. Поэтому фазовые токи потребителя равны и имеют взаимный фазовый угол 120°. На векторной диаграмме рис. 3.2 представлены векторы линейных напряжений, векторы фазных токов, соответствующие активно-индуктивному характеру нагрузки и векторы линейных токов по уравнениям (5). Линейные токи при симметричной нагрузке также равны и имеют взаимный фазовый угол 120°. Линейный ток равен удвоенной проекции вектора фазного тока под углом 30°. При симметричной нагрузке:

Расчет токов для соединения треугольником при симметричной нагрузке приведен в примере (4). При несимметричной нагрузке аналитический расчёт токов следует выполнять символическим методом. Справедливы общие правила составления уравнений. Необходимо рассчитать шесть токов. Схема имеет четыре узла: три в соединении треугольником и один в источнике. Независимые уравнения по первому закону Кирхгофа соответствуют уравнениям (5). Уравнения, составленные по второму закону Кирхгофа, включающие линейные напряжения и разрешённые относительно тока - это три уравнения, соответствующие уравнениям (4).

Соединение звездой.

При соединении фаз потребителя звездой, один из проводов каждой фазы подключается к точкам А, В, С соответственно, а остальные три провода объединяются и присоединяются к точке N. Схема соединения приведена на рис. 3.3а. При таком соединении к каждой из фаз потребителя приложено фазное напряжение сети.

Соотношения для расчёта токов соединения звездой:

где для каждой из фаз:

Ток в нейтральном проводе определяется по первому закону Кирхгофа в векторной форме, рис.3.3б:

При симметрической нагрузке Z и φ каждой из фаз потребителя одинаковы. В этом случае фазные токи равны и имеют взаимный фазовый угол 120°. Их векторная сумма определяет нулевое значение тока в нейтральном проводе. Поэтому трёхфазные потребители при соединении фаз звездой к нейтральной точке не подключаются. Равенство фазных напряжений потребителя и их взаимные фазовые углы 120° обеспечиваются симметричностью нагрузки. Более сложные варианты подключения несимметричных потребителей к трёхфазной сети сводятся к схемам соединения треугольником или звездой. Они могут быть и с неполным количеством фаз. Расчёты токов и напряжений на основе графических построений векторов в векторных диаграммах возможен. Общим же случаем расчета является применение символического метода.

 

· Соотношения между линейными и фазными напряжениями и токами

 

 

· Режимы работы

 





Поделиться с друзьями:


Дата добавления: 2016-11-24; Мы поможем в написании ваших работ!; просмотров: 933 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

В моем словаре нет слова «невозможно». © Наполеон Бонапарт
==> читать все изречения...

2187 - | 2151 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.01 с.