Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Дифракция на двумерной решетке




Двумерная решетка представляет собой скрещенные перпендикулярно друг другу решетки с периодами и , причем часто . Пусть ось Х перпендикулярна щелям первой решетки. Ось Y – щелям второй, а ось Z направлена перпендикулярно плоскости двумерной решетки. Углы между падающими и дифрагированными лучами и осями Х, Y, Z обозначим, соответственно, через и . Очевидно, что - углы, дополняющие углы дифракции до 90о (рис. 10.1). Пусть на двумерную решетку нормально падает плоская волна. Тогда условия возникновения главных максимумов для излучения с длиной волны l имеют вид:

(13.1)

 

Рис.13.1

 

Углы связаны между собой соотношением

(13.2)

Выражения (13.1) и (13.2) позволяют, при известных , и , определить углы , , характеризующие направление дифрагированного луча для максимумов того или иного порядка. Если в каждой решетке число щелей N1 и N2 достаточно велико, то максимумы будут очень острыми и в них сосредоточится практически вся световая энергия дифрагировавших волн. В результате на экране, расположенном за двумерной решеткой получится дифракционная картина в виде четких, симметрично расположенных световых пятен, каждому из которых соответствуют два целочисленных индекса и (рис. 13.2).

 

 

Рис. 13.2

 

Главные максимумы возникают только тогда, когда и одновременно , где и целые числа. В этом случае интенсивность света в данном направлении . Если только одно из этих чисел ( или ) целое, т.е. выполняется условие возникновения главного максимума лишь для одной из решеток, то его интенсивность оказывается много меньше.

Одна система максимумов (соответствующая условию ) располагается вдоль оси Х, а вторая () – вдоль оси Y. В центре картины находится максимум нулевого порядка, который лежит в направлении

Если углы дифракции малы, координаты главных максимумов вдоль оси Х и вдоль оси Y определятся соответственно как:

(13.3)

где и

При больших расстояниях L от решетки до экрана, суперпозиция параллельных дифрагированных лучей осуществляется на экране и без собирающей линзы и выражения (13.3) примут вид:

(13.3а)

где и

Пусть волна падает на двумерную решетку наклонно (т.е. углы и отличны от ). Тогда условия возникновения главных максимумов примут вид:

(13.4)

Общий характер дифракционной картины, в этом случае, останется прежним, изменятся лишь масштабы по осям Х и Y, наблюдаемой дифракционной картины.

Если решетки и взаимно не перпендикулярны, а составляют какой-либо угол между собой, положение максимумов будет зависеть от угла между штрихами решеток. Однако, нарушение строгой периодичности щелей (хаотическое их распределение) приводит к существенному изменению общей картины: наблюдаются симметричные размытые интерференционные кольца. Интенсивность наблюдаемых колец пропорциональна не квадрату числа щелей, а числу щелей. Таким образом, по расположению максимумов можно судить о величине периодов и и взаимной ориентации решеток.





Поделиться с друзьями:


Дата добавления: 2016-11-23; Мы поможем в написании ваших работ!; просмотров: 2540 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Наглость – это ругаться с преподавателем по поводу четверки, хотя перед экзаменом уверен, что не знаешь даже на два. © Неизвестно
==> читать все изречения...

2684 - | 2249 -


© 2015-2025 lektsii.org - Контакты - Последнее добавление

Ген: 0.01 с.