Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


III. Методика измерений и расчетные формулы. Вязкость представляет собой пример так называемых явлений переноса




Вязкость представляет собой пример так называемых явлений переноса. В упрощенной теории вязкости, которая, тем не менее, охватывает все существенные черты данного явления, используются понятия эффективного диаметра и средней длины свободного пробега молекул газа. Молекулы не все время движутся свободно, а время от времени сталкиваются с другими молекулами. В момент столкновения скорость молекулы испытывает резкое изменение как по величине, так и по направлению. В результате траектория молекулы имеет вид ломаной линии с большим количеством звеньев. Для количественного описания явления Клаузиус ввел понятие средней длины свободного пробега l, т.е. среднего расстояния, которое пролетает молекула между двумя последовательными столкновениями. Для оценки l используется модель твердых шаров, с которыми отождествляются молекулы. Диаметр такого шара называется эффективным диаметром молекулы d и совпадает с минимальным расстоянием, на которое сближаются центры двух молекул. Для оценки l предположим, что движется только одна молекула с постоянной скоростью υ – средней тепловой скоростью молекул. Тогда:

. (1)

Вообразим, что с подвижной молекулой жестко связана концентрическая с ней твердая сфера диаметра 2 d, которую назовем сферой ограждения молекулы. Между двумя последовательными столкновениями подвижной молекулы ее сфера ограждения описывает цилиндр, длина которого и есть свободный пробег молекулы. Если центр другой молекулы лежит внутри или на боковой поверхности этого цилиндра, то она столкнется с нашей молекулой, в противном случае столкновения не произойдет. Пусть V – объем цилиндра, описываемого сферой ограждения в единицу времени; его объем составляет V = πd 2 υ. Среднее число z столкновений движущейся молекулы с остальными молекулами в единицу времени равно среднему числу последних в объеме V, т.е. z = Vn, где n – число молекул в единице объема, или концентрация. Поэтому:

z=nπd2 υ. (2)

Путь, проходимый молекулой за единицу времени, численно равен ее скорости υ. Разделив этот путь на среднее число столкновений z, получим среднюю длину свободного пробега молекулы:

. (3)

Строгий расчет с учетом максвелловского распределения молекул по скоростям дает следующий результат [2]

, (4)

. (5)

Наличие внутреннего трения в газах можно проиллюстрировать на следующем примере: между двумя параллельными пластинками АВ и CD площади S (см. рис. 4) находится воздух или иной газ. При движении пластинки CD появляется сила, действующая на пластинку АВ и направленная в сторону движения. Эта сила и есть сила внутреннего трения. Впрочем, о внутреннем трении можно говорить лишь тогда, когда расстояние между пластинами АВ и CD очень велико по сравнению со средней длиной свободного пробега молекул газа. Тогда от наличия пластин можно отвлечься и говорить о силах, действующих внутри самого газа. Будем представлять себе газ неограниченным и движущимся стационарно плоскопараллельными слоями в горизонтальном направлении. Скорость этого макроскопического движения u меняется в направлении, перпендикулярном к слоям, это направление примем за ось Ox (рис. 4, 5), т.е. предполагается, что u = u (x). Рассечем мысленно газ на две половины плоскостью, параллельной слоям и проходящей через некоторую точку x0. Допустим для определенности, что скорость u (x) возрастает с увеличением х. Тогда верхняя половина газа будет действовать на нижнюю с силой, направленной вправо, а нижняя на верхнюю – с силой, направленной влево. Это и есть силы внутреннего трения, их величина определяется формулой Ньютона:

(6)

где η – коэффициент вязкости.

Рисунок 5 – К определению вязкости  
С молекулярной точки зрения происхождение сил внутреннего трения объясняется так: если бы газ покоился, то все направления скоростей его молекул были бы равновероятны, а средняя скорость и средний импульс каждой молекулы были бы равны нулю. При наличии упорядоченного движения газа средняя скорость молекулы отлична от нуля и равна u = u (x). С этой скоростью связан импульс Р = mu, которым обладает рассматриваемая молекула; такой импульс условимся называть упорядоченным. Молекулы, лежащие над плоскостью АВ, обладают большим упорядоченным импульсом, чем молекулы, расположенные под ней. Переходя из верхнего полупространства в нижние, молекулы передают часть своего упорядоченного импульса молекулам, с которыми они сталкиваются в нижнем полупространстве. Это проявляется в том, что газ, расположенный ниже плоскости АВ, подвергается действию силы, направленной в сторону скорости u. Аналогично, более медленные молекулы, попадая из нижнего в верхнее полупространство, при столкновениях отнимают часть упорядоченного импульса у молекул, расположенных выше плоскости АВ. В результате газ в верхнем полупространстве испытывает тормозящую силу, направленную против скорости u. Эти силы и являются силами внутреннего трения.

Количественное описание внутреннего трения с помощью рассмотрения потока импульса (который в нашем примере направлен сверху вниз) позволяет получить явное выражение для коэффициента внутреннего трения (вязкости):

. (7)

В (7) использовано соотношение, связывающее плотность газа ρ с массой молекулы m и концентрацией молекул n: ρ = nm.

Для определения коэффициента вязкости воздух продувается через длинный тонкий канал (капилляр) с небольшой скоростью. При малых скоростях потока течение в канале является ламинарным, т.е. поток воздуха движется отдельными слоями, и его скорость в каждой точке направлена вдоль оси канала. Такое течение устанавливается на некотором расстоянии от входа в капилляр, поэтому для достижения достаточной точности эксперимента необходимо выполнение условия r << , где r – радиус капилляра, – длина капилляра; в данной установке r = 0,50 мм, = 0,1 м, т.е. условие малости радиуса капилляра по сравнению с его длиной выполнено. С другой стороны, r достаточно велик по сравнению с l, чтобы был задействован механизм внутреннего трения; так, при условиях, близких к нормальным, для «молекул воздуха» имеем d ≈ 3,7·10-10 м, и справедлива оценка l ~ 6·10-8 м.

Для объемного расхода газа Q (т.е. объема газа, протекающего за единицу времени через поперечное сечение канала) справедлива формула Пуазейля [2]:

. (8)

Это соотношение используется для экспериментального определения коэффициента вязкости газа. Измеряя объемный расход Q и разность давлений (p 1p 2) воздуха на концах капилляра длиной и радиусом r, коэффициент вязкости можно рассчитать по формуле:

. (9)





Поделиться с друзьями:


Дата добавления: 2016-11-23; Мы поможем в написании ваших работ!; просмотров: 7061 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Надо любить жизнь больше, чем смысл жизни. © Федор Достоевский
==> читать все изречения...

2332 - | 2011 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.011 с.