Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Сравнение эмпирического распределения с теоретическим




В разных задачах подсчет теоретических частот осуществляется по-разному.

Рассмотрим примеры задач, иллюстрирующих различные варианты подсчета теоретических частот. Начнем с равновероятного распределения теоретических частот. В задачах такого типа в силу требования равномерности распределения все теоретические частоты должны быть равны между собой.

Задача 2. Предположим, что в эксперименте психологу необходимо использовать шестигранный игральный кубик с цифрами на гранях от 1 до 6. Для чистоты эксперимента необходимо получить «идеальный» кубик, т.е. такой, чтобы при достаточно большом числе подбрасываний, каждая его грань выпадала бы примерно равное число раз. Задача состоит в выяснении того, будет ли данный кубик близок к идеальному?

Решение. Для решения этой задачи, психолог подбрасывал кубик 60 раз, при этом количество выпадений каждой грани (эмпирические частоты ) распределилось следующим образом:

Таблица 2.

Грани кубика            
-эмпирические частоты            
-теоретические частоты            

 

В «идеальном» случае необходимо, чтобы каждая из 6 его граней (теоретические частоты) выпадала бы равное число раз: . Величина и будет, очевидно, теоретической частотой , одинаковой для каждой грани кубика.

Согласно данным подсчитаем величину по формуле:

,

где - эмпирическая частота,

-теоретическая частота,

- количество разрядов признака.

.

Замечание. Для вычисления можно составить таблицу таблица 2.

 

 

Таблица 2.

Грани кубика
          0,4
      -1   0,1
          0,1
          1,6
      -2   0,4
      -4   1,6
Суммы     0 (!)  

 

Теперь, для того чтобы найти , необходимо обратиться к таблице 12 Приложения 1, определив, предварительно число степеней свободы v. В нашем случае (число граней) k = 6, следо­вательно, v = 6 - 1 = 5. По таблице 12 Приложения 1 находим величины для уровней значимости 0,05 и 0,01:

В нашем случае попало в зону незначимости и оказалось равным 4,2, что гораздо меньше 11,070 – критической величины для 5% уровня значимости. Следовательно, можно принимать гипотезу о том, что эмпирическое и теоретическое распределения не различаются между собой. Таким образом, можно ут­верждать, что игральный кубик «безупречен».

Понятно, также, что если бы попало в зону значимости, то следовало бы принять гипотезу о наличии различий и тем самым утверждать, что наш игральный кубик был бы далеко не «безупречен».

При решении приведенной выше задачи с равновероятным распределением теоретических частот не было необходимости использовать специальные процедуры их подсчета. Однако на практике чаще возникают задачи, в которых распределение теоретических частот не имеет равновероятного характера. В этих случаях для подсчета теоретических частот используются специальные формулы или таблицы. Рассмотрим задачу, в которой в качестве теоретического будет использоваться нормальное распределение.

Задача 3. У 267 человек был измерен рост. Вопрос состоит в том, будет ли полученное в этой выборке распределение роста близко к нормальному?

Решение. Измерения проводились с точностью до 0,1 см и все полученные величины роста оказались в диапазоне от 156,5 до 183,5 см. Для расчета по критерию целесообразно разбить этот диапазон на интервалы, величину интервала удобнее всего взять равной 3 см, поскольку 183,5 - 156,5 = 27 и 27 делится нацело на 3 . Таким образом, все экспериментальные данные будут распреде­лены по 9 интервалам. При этом центрами интервалов будут следующие числа: 158, 161, 164, 167, 170,173,176,179,182.

При измерении роста в каждый из этих интервалов попало какое-то количество людей - эта величина для каждого интервала и будет эмпирической частотой, обозначаемой в дальнейшем как .

Чтобы применить расчетную формулу , необходимо, прежде всего, вычислить теоретические частоты. Для этого по всем полученным значениям эмпирических частот (по всем выборочным данным) нужно вычислить:

1) среднее .

2) и среднеквадратическое отклонение ().

Для наших выборочных данных величина среднего оказалась равной 166,22 и среднеквадратическое = 4,06.

Затем для каждого выделенного интервала следует подсчитать величины по формуле (где индекс i изменяется от 1 до 9, т.к. у нас 9 интервалов):

Величины называются нормированными частотами. Удобнее производить их расчет с помощью таблицы 3.

Затем по величинам нормированных частот по таблице 11 Приложения 1 находятся величины , которые называются ординатами нормальной кривой для каждой . Величины , полученные из таблицы 11 Приложения 1, заносятся в соответствующую строчку четвертого столбца таблицы 3. Величины, полученные в третьем и четвертом столбцах таблицы 3, позволяют вычислить по соответствующей формуле необходимые нам теоретические частоты (обозначаемые как. ) и также занести их в пятый столбец таблицы 3.

Расчет теоретических частот осуществляется для каждого интервала по следующей формуле

,

где n = 267 (общая величина выборки),

= 3 (величина интервала),

— среднеквадратичное отклонение.

Таблица 3.

Центры интервалов Эмпирические частоты Ординаты нормальной кривой Расчетные теоретические частоты
    -2,77 0,0086 1,6
    -2,03 0,0508 10,0
    -1,29 0,1736 34,3
    -0,55 0,3429 67,8
    +0,19 0,3918 77,6
    +0,93 0,2589 51,2
    +1,67 0,0989 19,5
    +2,41 0,0219 4,4
    +3,15 0,0028 0,6
Суммы   - - 267,0

 

Для вычисления составим таблицу 4, которая получается из таблицы 3, сложением первых двух строк и двух нижних строк, для того, чтобы получить 7 интервалов для упрощения расчетов.

Таблица 4.

Альтернативы
    11,6 +0,4 0,16 0,01
    34,3 -3,3 10,89 0,32
    67,8 +3,2 10,24 0,15
    77,6 +4,4 19,36 0,25
    51,2 -5,2 27,04 0,53
    19,5 -0,5 0,25 0,01
    5,0 +1,0 1,00 0,20
Суммы        

 

В случае оценки равенства эмпирического распределения нормальному, число степеней свободы определяется: . Таким образом, число степеней свободы в нашем случае будет равно v = 4. По таблице 12 Приложения 1 находим:

Полученная величина эмпирического значения хи -квадрат попала в зону незначимости, поэтому, необходимо принять гипотезу об отсутствии различий. Следовательно, существуют все основания утверждать, что наше эмпирическое распределение близко к нормальному.

В заключении подчеркнем, что, несмотря на некоторую «громоздкость» вычислительных процедур, этот способ расчета дает наиболее точную оценку совпадения эмпирического и нормального распределений.





Поделиться с друзьями:


Дата добавления: 2016-11-23; Мы поможем в написании ваших работ!; просмотров: 670 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Логика может привести Вас от пункта А к пункту Б, а воображение — куда угодно © Альберт Эйнштейн
==> читать все изречения...

2225 - | 2154 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.01 с.