Обычно длина одного пакета не превышает 1500 байт. Поэтому одно электронное письмо может состоять из нескольких сотен таких пакетов. Малая длина пакета не приводит к блокировке линий свя зи и не позволяет отдельным пользователям надолго захватывать канал связи.
К каждому полученному TCP-пакету протокол IP добавляет информацию, по которой можно определить адреса отправителя и получателя. Это аналогично помещению адреса на конверт. Для каждого поступающего пакета маршрутизатор, через который проходит пакет, по данным IP-адреса определяет, кому из ближайших соседей необходимо переслать данный пакет, чтобы он быстрее оказался у получателя, т.е. принимает решение об оптимальном пути следования очередного пакета. При этом географически самый короткий путь не всегда оказывается оптимальным (быстрый канал на другой континент может быть лучше медленного в соседний город). Очевидно, что скорость и пути прохождения разных пакетов могут быть различными. Взаимосвязанные пакеты данных могут передаваться различными путями. Возможно, что пакеты будут путешествовать через разные континенты с различной скоростью. При этом пакеты, отправленные позже, могут дойти раньше. Независимо от длины пути в результате конечного числа пересылок TCP-пакеты достигают адресата.
Наконец, TCP-модуль адресата собирает и распаковывает IP-конверты, затем распаковывает TCP-конверты и помещает данные в нужной последовательности. Если чего-либо недостает, он требует переслать этот пакет снова. Пакеты не только теряются, по и могут искажаться при передаче из-за наличия помех на линиях связи. TCP решает и эту проблему. В конце концов, информация собирается в нужном порядке и полностью восстанавливается.
Таким образом, протокол IP осуществляет перемещение данных в сети, а протокол TCP обеспечивает надежную доставку данных, используя систему кодов, исправляющих ошибки. Причем два сетевых сервера могут одновременно передавать в обе стороны по одной линии множество ТСР-яакетов от различных клиентов.
Необходимо подчеркнуть основное различие передачи информации по телефонной сети и по Интернету. Телефонная система при звонке по телефону в другой регион или даже на другой континент устанавливает канал между вашим телефоном и тем, на который вы звоните. Канал может состоять из десятков участков разной физической природы — медные провода, волоконно-оптические линии, беспроводные участки, спутниковая связь и т.д. Эти участки неиз менны на протяжении всего сеанса связи. Это означает, что линия между вами и тем, кому вы звоните, постоянна в течение всего разговора, поэтому повреждения на любом участке линии способны прервать ваш разговор. При этом выделенная вам часть сети для других уже недоступна. Речь идет о сети с коммутацией каналов. Интернет же является сеть/о с коммутацией пакетов. Процесс пересылки электронной почты принципиально иной.
Итак, Internet-данные в любой форме - электронное письмо, Web-страница или скачиваемый файл - путешествуют в виде группы пакетов. Каждый пакет посылается на место назначения по оптимальному из доступных путей. Поэтому даже если какой-то участок Интернет окажется нарушенным, то это не повлияет на доставку пакета, который будет направлен по альтернативному пути. Таким образом, во время доставки данных нет необходимости в фиксированной линии связи между двумя пользователями. Принцип пакетной коммутации обеспечивает основное преимущество Internet — надежность. Сеть может распределять нагрузку по различным участкам за тысячные доли секунды. Если какой-то участок оборудования сети поврежден, пакет может обойти это место и пройти по другому пути, обеспечив доставку всего послания. Прототип Интернет — сеть ARPAnet, разработанная по заказу Минобороны США, задумывалась именно как сеть, устойчивая к повреждениям (например, в случае военных действий), способная продолжать нормальное функционирование при выходе из строя любой ее части.
7.9,2. fldpecciuuo В интернет
Каждому компьютеру, подключенному к Интернету, присваивается идентификационный номер, который называется IP-адресом.
При сеансовом подключении к Интернету IP-адрес выделяется компьютеру только на время этого сеанса. Присвоение адреса компьютеру на время сеанса связи называется динамическим распределением IP-адресов. Оно удобно для провайдера, поскольку один и тот же IP-адрес в разные периоды времени может быть выделен разным пользователям. Таким образом, Интернет-провайдер должен иметь по одному IP-адресу на каждый обслуживаемый им модем, а не на каждого клиента.
IP-адрес имеет формат ххх.ххх.ххх.ххх, где ххх — числа от 0 до 255. Рассмотрим типичный IP-адрес: 193.27.61.137. Для облегчения запоминания IP-адрес обычно выражают рядом чисел в десятичной системе счисления, разделенных точками. Но компьютеры хранят его в бинарной форме. Например, тот же IP-адрес в двоичном коде будет выглядеть так:
11000001. 00011011. 00111101. 10001001.
Четыре числа в IP-адресе называются октетами, поскольку в каждом из них при двоичном представлении имеется восемь разрядов: 4 * 8=32. Так как каждая из восьми позиций может иметь два различных состояния: 1 или 0, общий объем возможных комбинаций составляет 2х или 256, т.е. каждый октет может принимать значения от 0 до 255. Комбинация четырех октетов дает 2п значений, т.е. примерно 4,3 млрд комбинаций, за исключением некоторых зарезервированных адресов.
Октеты делят на две секции: Net и Host. Net-секция используется для того, чтобы определить сеть, к которой принадлежит компьютер. Host, который называют узлом, определяет конкретный компьютер в сети.
Подобная система используется и в обычной почте.
На ранней стадии своего развития Интернет состоял из небольшого количества компьютеров, объединенных модемами и телефонными линиями. Тогда пользователи могли установить соединение с компьютером, набрав цифровой адрес, например 163. 25. 51. 132. Это было удобно, пока компьютеров было мало. По мере увеличения их количества цифровые имена стали заменять текстовыми, потому что текстовое имя проще запомнить, чем цифровое. Возникла проблема автоматизации этого процесса, и в 1983 г. в Висконсинском университете США была создана так называемая DNS-система (Domain Name System), которая автоматически устанавливала соответствие между текстовыми именами и IP-адресами. Вместо чисел была предложена ставшая сегодня для нас привычной запись типа www. myname. gorod. ru.
Подобным же образом осуществляется сортировка обычной почты. Люди привыкли ориентироваться по географическим адресам, в то время как автомат на почте быстро сортирует почту по индексу.
Таким образом, при пересылке информации компьютеры используют цифровые адреса, люди — буквенные, а DNS-сервер служит своеобразным переводчиком.
7.9.3. Доменные имена
Когда происходит обращение' на Web или посылается e-mail, то,используется доменное имя. Например, адрес http://www.microsoft.com содержит доменное имя microsoft.com. Аналогично e-mail-адрес algol@rambler.ru содержит доменное имя rambler.ru.
В доменной системе имен реализуется принцип назначения имен с определением ответственности за их подмножество соответствующих сетевых групп.
Каждая группа придерживается этого простого правила. Имена, которые она присваивает, единственны среди множества ее непосредственных подчиненных, поэтому никакие две системы, где бы они ни находились в Интернете, не смогут получить одинаковые имена. Так же уникальны адреса, указываемые на конвертах при доставке писем обычной почтой. Таким образом, адрес на основе географических и административных названий однозначно определяет точку назначения.
Домены имеют подобную иерархию. В именах домены отделяются друг от друга точками: addressx.msk.ru, addressy.spb.ru. В имени может быть различное количество доменов, но обычно их не больше пяти. По мере движения по доменам в имени слева направо, количество имен, входящих в соответствующую группу, возрастает.
Для перевода буквенного доменного имени в IP-адрес цифрового формата служат DNS-серверы.
В качестве примера рассмотрим адрес group, facult. univers. rst. ru.
Первым в имени стоит название рабочей.машины — реального компьютера с IP-адресом. Это имя создано и поддерживается группой facult. Группа входит в более крупное подразделение univers, далее следует домен rst - он определяет имена ростовской части сети, а ru — российской.
Каждая страна имеет свой домен: аи - Австралия, be - Бельгия и т.д. Это географические домены верхнего уровня.
Помимо географического признака используется организационный признак, в соответствии с которым существуют следующие доменные имена первого уровня:
• com — коммерческие предприятия,
• edu — образовательные учреждения,
• gov — государственные учреждения,
• mil — военные организации,
• net — сетевые образования,
• org — учреждения других организаций и сетевых ресурсов.
Внутри каждого доменного имени первого уровня находится целый ряд доменных имен второго уровня. Домен верхнего уровня рас
полагается в имени правее, а домен нижнего уровня — левее.
Так, в адресе www. continent, rst. ru домен верхнего уровня ru указывает на то, что адрес принадлежит российской части Интернет, rst - определяет город, следующий уровень - домен конкретного предприятия.
Лавинообразное подключение в сети Интернет обнажило проблему недостатка адресного пространства. В 1995 г. организация IETF (Internet Engineering Task Force - инженерные силы Интернет) опубликовала рекомендации по протоколу IP следующего поколения — IP v. 6 (сейчас IP v. 4), которые предполагают постепенный переход с существующей 32-разрядной системы присвоения IP-адресов на 128-разрядную систему. Такая мера сулит увеличение адресного пространства в 296 раз, что позволит каждому жителю планеты иметь несколько адресов. Переход уже начался. Вместе с использованием новых оптоволоконных каналов для увеличения скорости в сотни и тысячи раз расширение адресного пространства даст возможность осуществить проект Интернет 2. Эта сеть в настоящее время развертывается в США для ряда университетов, школ, федеральных агентств и крупных компьютерных компаний.
Во время приема запроса на перевод доменного имени в IP-адрес DNS-сервер выполняет одно из следующих действий:
• отвечает на запрос, выдав IP-адрес, если знает IP-адрес запрашиваемого домена;
• взаимодействует с другим DNS-сервером для того, чтобы найти
IP-адрес запрошенного имени, если он его не знает (такой запрос может проходить по цепочке DNS-серверов несколько раз);
• выдает сообщение: «Я не знаю IP-address домена, запрашиваемого вами, но вот IP-address DNS-сервера, который знает больше меня»;
• сообщает, что такой домен не существует.
Предположим, вы набрали адрес group, facult. univers. rst. com, который имеет адрес в домене верхнего уровня СОМ. В простейшем ' варианте браузер контактирует с DNS-сервером для того, чтобы по лучить IP-адрес искомого компьютера, и DNS-сервер возвращает этот искомый IP-адрес.
Одна из причин надежной работы этой системы — ее избыточность. Существует множество DNS-серверов на каждом уровне, и поэтому если один из них не может дать ответ, то точно существует другой, на котором есть необходимая информация.
Система кэширования делает поиск более быстрым. DNS-сервер, однажды сделав запрос на корневой DNS и получив адрес нужного DNS-сервера, кэширует полученный IP-адрес. В следующий раз он уже не будет повторно обращаться с подобным запросом. Подобное кэширование происходит с каждым запросом, что постепенно оптимизирует скорость работы системы. Пользователям работа DNS-сервера не видна, однако эти серверы каждый день выполняют миллиарды запросов, обеспечивая работу миллионов пользователей.
7.9.4. Варианты доступа В интернет
Провести соединение между ISP-провайдером и пользователями - задача не из простых. Обычно провайдер подключен к Интернет с помощью дорогостоящего оптоволоконного высокоскоростного канала. Один провайдер обслуживает множество клиентов, которые рассредоточены на большой территории. Технология, по которой осуществляется связь между абонентами и местной телекоммуникационной службой, т.е. провайдером, получила название технологии последней мили. Название это условное (обычно расстояние от абонента до провайдера не превышает 4 км).
Существует целый ряд технологий, позволяющих использовать имеющуюся инфраструктуру - телефонные линии, сети кабельного телевидения и т.д., - для осуществления доступа в Интернет.
Наиболее распространенный среди домашних пользователей в России способ доступа в Интернет - доступ по коммутируемой телефонной линии с помощью модема. Скорость доступа при таком способе подключения не более 56 Кбит/с, но такая скорость сегодня мало кого устраивает. Какие же альтернативные технологии позволяют получить более высокую скорость доступа в Интернет?
Обычный телефон использует лишь низкочастотный диапазон линии. Однако провод телефонной линии способен передавать гораздо больше данных, если использовать более широкую полосу (полоса пропускания обычной телефонной линии 3400 КГц). Поэтому телефонную сеть, которая изначально предназначалась для передачи голосового сигнала, приспособили для высокоскоростной передачи цифровых данных.
DSL-технология (Digital Subscriber Line — цифровая абонентская линия) позволяет использовать более широкую полосу пропускания для передачи данных без ущерба для использования телефонной линии по прямому назначению. Существует целое семейство технологий под общим названием xDSL, где приставка х указывает на конкретную спецификацию семейства DSL. Эта технология весьма перспективна, она позволяет одновременно работать в Интернете и разговаривать по телефону. Скорость подключения по ней намного выше, чем при помощи обычного модема. DSL не требует прокладки новых проводов, так как лспользует уже имеющуюся телефонную линию.
Одним из основных преимуществ технологии xDSL является высокоскоростной доступ в Интернет. При работе в Интернет основной поток информации идет из сети к пользователю, а в сеть передается гораздо меньший объем данных. Действительно, при просмотре Web-страниц в ответ на небольшой запрос пользователь получает из Сети не только текст, но и изображения. Таким образом, информационный обмен является асимметричным.
ADSL (Asymmetrical DSL), или асимметричный DSL, позволяет передавать данные пользователю со скоростью, на порядок превышающую скорость передачи данных от пользователя. При этом сигнал от пользователя в Сеть передается на более- низких частотах, чем сигнал из Сети к пользователю. Теоретически при этом можно иметь канал с пропускной способностью 1 Мбит/с в прямом направлении (в Сеть) и 8 Мбит/с — в обратном. При этом одна и та же линия может использоваться для передачи голоса и цифровых данных. По сравнению с коммутируемым доступом ADSL-линия работает, как минимум, на два порядка быстрее. Высокая скорость позволяет комфортно работать с Web-сайтами с мультимедийной информацией, быстро перекачивать большие файлы и полноценно использовать интерактивные приложения.
Достоинства ADSL: легкость установки (используется уже имеющаяся телефонная линия), постоянный доступ в Интернет (пользователи ADSL не разделяют полосу пропускания с другими абонентами).
Недостаток ADSL: ограничения по дальности. Скорость передачи потока данных в обратном направлении существенно зависит от расстояния. Если при расстоянии 3 км можно получить скорость около 8 Мбит/с, то на расстоянии 5 км - только 1,5 Мбит/с.
На стороне пользователя компьютер подключается к ADSL-модему. Принцип действия ADSL-модема заключается в том, что диапазон частот в интервале 24—1100 КГц разбивается на 4 КГц полосы, на каждую из которых назначается виртуальный модем. Таким образом, каждый из этих 249 виртуальных модемов работает со своим диапазоном. ADSL-модем подключается к частотному разделителю. Частотный разделитель представляет собой фильтр низких частот, разделяющий низкочастотный сигнал обычной телефонной связи и высокочастотный ADSL-сигнал. Конструктивно частотный разделитель, или сплиттер, выполняется в виде блока, имеющего три гнезда: для подключения ADSL-модема, телефонного аппарата и линии. Частотный разделитель позволяет подключить к одной линии и компьютер, и телефон. Таким образом, по одной линии могут передаваться и цифровые компьютерные сигналы, и аналоговые сигналы телефонной связи
На телефонной станции такой же частотный разделитель позволяет разделять низкочастотные и высокочастотные сигналы на другом конце абонентной линии. Голосовой аналоговый сигнал направляется в телефонную сеть общего пользования, а цифровой сигнал — на мультиплексор доступа DSLAM. На стороне провайдера сигнал от мультиплексора доступа DSLAM через модемный пул и сервер попадает в Интернет.
Мультиплексор доступа DSLAM (Digital Subscriber Line Access Multiplexer) — это устройство, установленное на телефонной станции, которое осуществляет подключение всех DSL-абонентов к одной высокоскоростной линии.
ADSL - весьма экономичная технология. Обычно такая линия обходится потребителю намного дешевле, чем выделенный канал аналогичной пропускной способности. По данной технологии может быть подключен не только отдельный компьютер, но и локальная сеть.
DSL-технология позволяет также использовать широкополосный доступ. Понятие «широкополосный доступ» означает, что канал предоставляет расширенную полосу частот для передачи информации. Высокая скорость передачи информации достигается благодаря тому, что с использованием широкой полосы частот информация может быть мультиплексирована и отправлена на нескольких различных частотах, позволяя, таким образом, передавать за единицу времени большее количество информации. Как известно, мультиплексирование - это передача нескольких сигналов по одному физическому каналу путем разделения его на подканалы. Говоря о частотном мультиплексировании, имеют в виду частотное разделение на подканалы.
Под термином узкополосный доступ обычно понимается канал, достаточный для передачи голоса. Скорость передачи по такому каналу не превышает 64 Кбит/с. Считается, что широкополосный доступ — это канал со скоростью передачи не менее 256 Кбит/с. Широкополосный доступ позволяет передавать в одном канале различные сигналы и одновременно пользоваться телефоном, телевизором и Интернетом.
Выделенная телефонная линия - это арендованная телефонная линия связи, соединяющая без коммутации двух абонентов. Наиболее распространенной технологией выделенной линии является технология ISDN (Integrated Services Digital Network).
ISDN — это стандарт цифровой передачи. Основным компонентом любой ISDN-линии является однонаправленный канал или В-канал с пропускной способностью 64 Кбит/с. По этому каналу могут передаваться цифровые данные и, соответственно, оцифрованные видео- и аудиоданные. Для расширения полосы пропускания В-кана-лы группируются по два. В состав группы включается также D-канал (16 Кбит/с), управляющий передачей данных.
Передача информации может осуществляться по обычному медному проводу. Пользователи, которые устанавливают ISDN-адаптер вместо модема, могут получить доступ в Интернет со скоростью до 128 Кбит/с. ISDN требует установки адаптеров на обоих концах линии передачи. ISDN-канал обычно предоставляется телефонными станциями. По линии ISDN можно вести телефонные разговоры и одновременно передавать данные в Интернет.
Сеть кабельного телевидения первоначально была разработана как система для передачи аналогового видеосигнала в одном направлении - в сторону пользователя. Позднее были созданы так называе мые кабельные модемы, которые кодируют и передают данные по кабелю таким образом, что это не мешает передаче телевизионного сигнала. Основным достоинством этой технологии является то, что используются уже имеющиеся сети кабельного телевидения. При доступе в Интернет по сетям кабельного телевидения обеспечивается высокая скорость передачи информации. Полосы пропускания телевизионного кабеля вполне достаточно для предоставления услуг последней мили при скоростях, сравнимых с теми, что предоставляют операторы DSL.
В отличие от ADSL, которая обеспечивает высокоскоростную передачу данных по одной телефонной линии, сети кабельного телевидения являются сетями коллективного пользования. Кабельные модемы получают услугу от общего источника информации. Рабочая полоса частот кабельного модема разделяется между всеми пользователями, подключенными к линии, и, следовательно, зависит от количества одновременно работающих пользователей. Обычно к одной модемной системе подключается несколько десятков абонентов. Чем больше клиентов одновременно посылают данные, тем меньше скорость их передачи. На практике скорость передачи данных от пользователей при применении кабельного модема часто меньше, чем при использовании ADSL.
Для организации связи между пользователем и опорной точкой радиосети провайдера используют радиоканал для высокоскоростного доступа в Интернет. С помощью этой технологии к Интернету можно подключить как индивидуальных пользователей, так и ЛВС. Для этого у абонента устанавливается радиомодем, который подключается к сетевой карте ПК или к хабу/маршрутизатору (в случае подключения ЛВС). Радиомодем соединен с направленной антенной, установленной на крыше здания. Антенна абонента направляется на базовую станцию провайдера. Связь между точкой входа в Интернет провайдера и абонентом осуществляется по радиоканалу.
С помощью данной технологии можно также объединить в сеть несколько филиалов компании без кабельного соединения. Для этого в каждом подразделении устанавливается абонентский комплект: направленная антенна и радиомодем. Провайдер обеспечивает связь между всеми точками доступа фирмы и правильную маршрутизацию данных.
Оборудование беспроводных сетей работает в диапазоне частот 2,4 ГГц. Сигналы такой частоты распространяются вдоль прямой линии, соединяющей антенны, поэтому радиоканал может быть организован при условии прямой видимости между абонентской антенной и антенной провайдера. На практике направленные антенны обеспечивают дальность связи до 30 км.
Преимущества радиоканала: быстрая инсталляция, мобильность (нет кабеля), высокая скорость (несколько Мбит/с в зависимости от оборудования), затраты (первоначальные затраты на оборудование выше, чем в случае выделенной линии, но абонентская плата ниже).
В случае отсутствия телефонных станций и кабельного телевидения может помочь спутниковый доступ в Интернет. При этом скорость доступа на порядок выше, чем по обычному модему через коммутируемую телефонную линию, но несоизмеримо ниже ASDL-доступа. Существует две разновидности организации высокоскоростного доступа в Интернет по спутниковому каналу: симметричная и асимметричная.
В случае симметричного доступа клиент осуществляет передачу запроса на спутник и прием данных со спутника. Подобное решение является достаточно дорогим, как по части клиентского оборудования, так и по стоимости абонентской платы.
В случае асимметричного доступа клиент осуществляет передачу запроса на получение требуемой информации по наземному каналу, а принимает информацию со спутника. Пользователь связывается с любым провайдером Интернета через обычный телефонный модем. Используя этот канал связи, он регистрируется на сервере провайдера, который обеспечивает асимметричный доступ в Интернет. После авторизации весь поток информации, поступающей в адрес пользователя через Интернет, направляется к нему не по обычной телефонной линии, а через спутниковый канал.
В последние годы активно разрабатываются технологии, направленные на использование бытовой электрической сети для доступа в Интернет. Одно из важнейших преимуществ бытовой электрической сети состоит в ее распространенности. Поэтому идея передачи информации по такой сети очень перспективна. Поскольку бытовая электрическая сеть первоначально не была предназначена для передачи информации, то это создает ряд технических трудностей. Электропроводка характеризуется высоким уровнем шумов, быстрым затуханием высокочастотного сигнала, а также изменением коммуникационных параметров в зависимости от текущей нагрузки.
Несмотря на технические трудности, сегодня уже имеются технологии, позволяющие использовать силовую кабельную инфраструктуру. В частности, компании Nor.web и United Utilities разработали технологию DPL (Digital Power Line), позволяющую передавать голос и пакеты данных через простые электрические сети 120/220 В со скоростью до 1 Мбит/с.
Ожидается, что DPL-технология сможет дать новый импульс развитию средств передачи данных по линиям электропитания и сделает возможным прямой доступ в Интернет практически из любой точки земного шара по минимальной стоимости. Пока эта технология не получила широкого распространения, однако в ближайшем будущем можно ожидать существенных изменений на рынке провайдерских услуг и снижения расценок на доступ в Сеть, включая цены на коммутируемые и выделенные линии.
Если эта технология получит распространение, она сможет значительно изменить расстановку сил на рынке предоставления Internet-доступа. Технология будет способствовать и появлению новых принципов проектирования силовых электрических сетей с учетом как энергетических, так и коммуникационных требований.
7.9.5. Система адресации URL
Чтобы найти документ в сети Интернет, достаточно знать ссылку на него — так называемый универсальный указатель на ресурс URL (Uniform Resource Locator — унифицированный указатель ресурса), который указывает местонахождение каждого файла, хранящегося на компьютере, подключенном к Интернету.
Адрес URL является сетевым расширением понятия полного имени ресурса, например, файла или приложения и пути к нему в операционной системе. В URL, кроме имени файла и директории, где он находится, указывается сетевое имя компьютера, на котором этот ресурс расположен, и протокол доступа к ресурсу, который можно использовать для обращения к нему.
Рассмотрим некоторые URL:
http://www.abc.def.ru/kartinki/SLIDE.htm
Первая часть http:// (Hypertext Transfer Protocol) — протокол передачи гипертекста, по которому обеспечивается доставка докумен та с Web-сервера, указывает браузеру, что для доступа к ресурсу применяется данный сетевой протокол.
Вторая часть www.abc.def.ru указывает на доменное имя.
Третья часть kartinki/SLIDE.htm показывает программе-клиенту, где на данном сервере искать ресурс. В данном случае ресурсом является файл в формате html, а именно SLIDE.htm, который находится в папке kartinki.
Имена директорий, содержащиеся в URL, — виртуальные и не имеют ничего общего с реальными именами каталогов компьютера, на котором выполняется Web-сервер, а являются их псевдонимами. Ни один владелец компьютера, на котором выполняется Web-сервер, не позволит постороннему пользователю, обращающемуся к Web-серверу через Интернет, иметь доступ к реальной файловой системе этого компьютера.
При написании URL важно правильно указывать верхние и нижние регистры. Дело в том, что Web-серверы функционируют под управлением разных операционных систем, а в некоторых из них имена файлов и приложений являются регистро-чувствительными.
В общем случае формат URL имеет вид: (протокол доступа) [://<домен>: <порт>](/<директория><имя ресурса>[/<параметры
запроса>].
Первая часть URL соответствует используемому протоколу доступа, например HTTP:// (протокол передачи гипертекста), FTP:// (File Transfer Protocol — протокол передачи файлов) и т.д.
Вторая часть URL-адреса указывает доменное имя, а также может указывать номер порта. Любой сервер предоставляет сервис, используя нумерованные порты. При этом каждая служба имеет свой номер порта. Клиенты подключаются к сервису по уникальному IP-адресу и по конкретному номеру порта. Так, если на компьютере функционируют Web-сервер и FTP-сервер, то обычно Web-сервер будет доступен по порту 80, а FTP-сервер — по порту 21. Каждый из распространенных сервисов имеет свой стандартный номер порта: WWW - 80, FTP - 21, ECHO ~ 7, TELNET - 23, SMTP - 25, GOPHER — 70 и т.д. Если номер порта не указан, то по умолчанию предполагается 80. В рассмотренном выше примере номер порта указан не был, поэтому он будет определен по умолчанию в связи с именем используемого протокола, в данном случае — HTTP.
При этом следует учитывать, что если устанавливается свой Web- сервер, то его можно поместить на другой свободный номер порта, например 920. В этом случае, если имя машины, например, aaa.bbb.com, то подключиться к этому серверу можно по URL http: //aaa.bbb.com:920.
Третья часть URL-адреса — путь доступа к файлу — аналогичен пути к файлу на клиентском компьютере. Если этот путь не указан, по умолчанию используется стандартный отклик, определяемый в настройках Web-сервера. В частности, стандартным откликом на HTTP-запрос для ряда Web-серверов служит вывод файла с именем index.html.
7.9,6. Сервисы интернет