Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


И технологии программирования 4 страница




Рис. 7. 2. Топология звезда

 

В настоящее время концентратор стал одним из стандартных компонентов сетей. В сетях с топологией звезда он, например, слу­жит центральным узлом. Концентраторы делятся на активные и пас­сивные. Активные регенерируют и передают сигналы так же, как репитеры. Их называют многопортовыми повторителями. Обычно они имеют от 8 до 12 портов для подключения компьютеров. Актив­ные концентраторы следует подключать к электрической сети. К пас­сивным концентраторам относятся монтажные или коммутирующие панели. Они просто пропускают через себя сигнал, не усиливая и не восстанавливая его. Пассивные концентраторы не надо подключать к электрической сети.

Недостатки этой топологии; дополнительный расход кабеля, ус­тановка концентратора. Главное преимущество этой топологии пе­ред шиной — более высокая надежность. Выход из строя одного или нескольких компьютеров на работу сети не влияет. Любые неприят­ности с кабелем касаются лишь того компьютера, к которому этот кабель присоединен, и только неисправность концентратора приво­дит к падению сети. Кроме того, концентратор может играть роль интеллектуального фильтра информации, поступающей от узлов в сеть, и при необходимости блокировать запрещенные администра­тором передачи.

Кольцо. Компьютеры подключаются к кабелю, замкнутому в кольцо (рис. 7.3). Сигналы передаются по кольцу в одном направле­нии и проходят через каждый компьютер. В отличие от пассивной топологии шина, здесь каждый компьютер выступает в роли репитера (повторителя), усиливая сигналы и передавая их следующему ком­пьютеру. Поэтому выход из строя хотя бы одного компьютера при­водит к падению сети.

 

Рис. 7. 3. Топология кольцо

Способ передачи данных по кольцу называется передачей марке­ра. Маркер (token) — это специальная последовательность бит, пере­дающаяся по сети. В каждой сети существует только один маркер. Маркер передается по кольцу последовательно от одного компьюте­ра к другому до тех пор, пока его не захватит тот компьютер, кото­рый хочет передать данные. Передающий компьютер добавляет к маркеру данные и адрес получателя, и отправляет его дальше по коль­цу. Данные проходят через каждый компьютер, пока не окажутся у того, чей адрес совпадает с адресом получателя. Затем принимающий компьютер посылает передающему сообщение, в котором подтверж­дает факт приема. Получив подтверждение, передающий компьютер восстанавливает маркер и возвращает его в сеть. Скорость движения маркера сопоставима со скоростью света. Так, в кольце диаметром 200 м маркер может циркулировать частотой 477 376 об/с.

Ячеистая топология. Сеть с ячеистой топологией обладает вы­сокой избыточностью и надежностью, так как каждый компьютер в такой сети соединен с каждым другим отдельным кабелем (рис. 7.4).

Рис. 7.4. Ячеистая топология

 

 

Сигнал от компьютера-отправителя до компьютера-получателя может проходить по разным маршрутам, поэтому разрыв кабеля не сказывается на работоспособности сети. Основной недо­статок — большие затраты на прокладку кабеля, что компенсируется высокой надежностью и простотой обслуживания. Ячеистая тополо­гия применяется в комбинации с другими топологиями при постро­ении больших сетей.

Кроме базовых топологий существуют их комбинации — комби­нированные топологии. Чаще всего используются две комбинирован­ные топологии: звезда-шина и звезда-кольцо. Звезда-шина — не­сколько сетей с топологией звезда объединяются при помощи магистральной линейной шины (к концентратору подключены ком­пьютеры, а сами концентраторы соединены шиной). Выход из строя одного компьютера не сказывается на работе всей сети, а сбой в ра­боте концентратора влечет за собой отсоединение от сети только подключенных к нему компьютеров и концентраторов. Звезда-коль­цо — отличие состоит только в том, что концентраторы в звезде-шине соединяются Магистральной линейной шиной, а в звезде-кольце кон­центраторы подсоединены к главному концентратору, внутри кото­рого физически реализовано кольцо.

7.4. Сетевые компоненты

 

7.4.1. Сетевые кабели

 

На сегодня подавляющая часть компьютерных сетей использует для соединения кабели. Это среда передачи сигналов между компь­ютерами.

В большинстве сетей применяются три основные группы кабелей:

• коаксиальный кабель;

• витая пара (twisted pair), неэкранированная (unshielded) и эк­ранированная (shielded);

• оптоволоконный кабель.

Коаксиальный кабель до недавнего времени был самым распро­страненным. Недорогой, легкий, гибкий, удобный, безопасный и простой в установке.

Существует два типа коаксиальных кабелей: тонкий (специфи­кация 10Base2) и толстый (спецификация l0Base5).

Тонкий - гибкий, диаметр 0,64 см (0,25"). Прост в применении и подходит практически для любого тина сети. Подключается непо­средственно к плате сетевого адаптера. Передает сигнал на 185 м практически без затухания. Волновое сопротивление - 50 ом.

Толстый - жесткий, диаметр 1,27 см (0,5"). Его иногда называ­ют стандартный Ethernet (первый кабель в популярной сетевой ар­хитектуре). Жила толще, затухание меньше. Передает сигнал без за­тухания на 500 м. Используют в качестве магистрали, соединяющей несколько небольших сетей. Волновое сопротивление - 75 ом.

Для подключения к толстому коаксиальному кабелю применя­ется специальное устройство - трансивер (transceiver - приемопере­датчик). Он снабжен коннектором, который называется вампир или, пронзающий ответвитель. К сетевой плате трансивер подключается с помощью кабеля с разъемом. Для подключения тонкого коаксиаль­ного кабеля используются BNC-коннекторы (British Naval Connector). Применяются BNC-T-коннекторы для соединения сетевого кабеля с сетевой платой компьютера, ВNC-баррел-коннекторы для сращи­вания двух отрезков кабеля, BNC-терминаторы для поглощения сиг­налов на обоих концах кабеля в сетях с топологией шина.

Витая пара — это два перевитых изолированных медных прово­да. Несколько витых пар проводов часто помещают в одну защит­ную оболочку. Переплетение проводов позволяет избавиться от элек­трических помех, наводимых соседними проводами и другими внешними источниками, например двигателями, трансформаторами, мощными реле.

Неэкранированная витая пара (UTP) широко используется в ЛВС, максимальная длина 100 м. UTP определена особым стандартом, в котором указаны нормативные характеристики кабелей для различ­ных применений, что гарантирует единообразие продукции.

Экранированная витая пара (STP) помещена в медную оплетку. Кроме того, пары проводов обмотаны фольгой. Поэтому STP мень­ше подвержены влиянию электрических помех и может передавать сигналы с более высокой скоростью и на большие расстояния.

Преимущества витой пары - дешевизна, простота при подклю­чении. Недостатки - нельзя использовать при передаче данных на большие расстояния с высокой скоростью.

В оптоволоконном кабеле цифровые данные распространяются по оптическим волокнам в виде модулированных световых импульсов. Это надежный способ передачи, так как электрические сигналы при этом не передаются. Следовательно, оптоволоконный кабель нельзя вскрыть и перехватить данные.

Оптоволоконные линии предназначены для перемещения боль­ших объемов данных на очень высоких скоростях, так как сигнал в них практически не затухает и не искажается. Оптоволокно переда­ет сигналы только в одном направлении, поэтому кабель состоит из двух волокон с отдельными коннекторами: одно — для передачи, дру­гое — для приема.

Скорость передачи данных в настоящее время составляет от 100 Мбит/с. Между тем, получает все большее распространение ско­рость 1 Гбит/с, теоретически - до 200 Гбит/с, Расстояние - многие километры. Кабель не подвержен электрическим помехам. Суще­ственным недостатком этой технологии является дороговизна и слож­ность в установке и подключении.

Типичная оптическая сеть состоит из лазерного передатчика света, мультиплексора/демультиплексора для объединения оптических сигналов с разными длинами волн, усилителей оптических сигналов, де мультиплексор о в и приемников, преобразующих оптический сиг­нал обратно в электрический. Все эти компоненты обычно собира­ются вручную.

Для передачи по кабелю кодированных сигналов используют две технологии - не модулированную и модулированную передачу.

Немодулированные системы передают данные в виде цифровых сигналов, которые представляют собой дискретные электрические или световые импульсы. При таком способе цифровой сигнал ис­пользует всю полосу пропускания кабеля (полоса пропускания — раз­ница между максимальной и минимальной частотой, которую мож­но передать по кабелю). Устройство в сетях с смодулированной передачей посылает данные в обоих направлениях. Для того, чтобы избежать затухания и искажения сигнала в не модулированных сис­темах, используют репитеры, которые усиливают и ретранслируют сигнал.

Модулированные системы передают данные в виде аналогового сигнала (электрического или светового), занимающего некоторую полосу частот. Если полосы пропускания достаточно, то один кабель могут одновременно использовать несколько систем (например, транслировать передачи кабельного телевидения и передавать дан­ные). Каждой передающей системе выделяется часть полосы пропус­кания. Для восстановления сигнала в модулированных системах ис­пользуют усилители. В модулированной системе устройства имеют раздельные тракты для приема и передачи сигнала, так как передача идет в одном направлении. Чтобы устройства могли и передавать, и принимать данные, используют разбиение полосы пропускания на два канала, которые работают с разными частотами для передачи и приема, или прокладку двух кабелей — для передачи и приема.

7,4.2. Беспроводная среда

Словосочетание беспроводная среда не означает полное отсутствие проводов в сети. Обычно беспроводные компоненты взаимодейству­ют с сетью, в которой в качестве среды передачи используется ка­бель. Такие сети называют гибридными.

Беспроводная среда обеспечивает временное подключение к су шествующей кабельной сети, гарантирует определенный уровень мобильности и снижает ограничения на протяженность сети. При­меняется в служебных помещениях, где у сотрудников нет постоян­ного рабочего места, в изолированных помещениях и зданиях, в стро­ениях, где прокладка кабелей запрещена.

Существуют следующие типы беспроводных сетей: ЛВС, расши­ренные ЛВС и мобильные сети. (переносные компьютеры). Основные различия между ними — параметры передачи. ЛВС и расширенные ЛВС используют передатчики и приемники той организации, в ко­торой функционирует сеть. Для переносных компьютеров средой передачи служат общедоступные сети (например, телефонная или Internet).

ЛВС выглядит и функционирует практически так же, как и ка­бельная, за исключением среды передачи. Беспроводный сетевой адаптер с трансивером установлен в каждом компьютере, и пользо­ватели работают так, будто их компьютеры соединены кабелем. Трансивер или точка доступа обеспечивает обмен сигналами между компьютерами с беспроводным подключением и кабельной сетью. Используются небольшие настенные трансиверы, которые устанав­ливают радиоконтакт с переносными устройствами.

Работа беспроводных ЛВС основана на четырех способах пере­дачи данных: инфракрасном излучении, лазере, радиопередаче в уз­ком диапазоне (одночастотной передаче), радиопередаче в рассеян­ном спектре.

7,4.3. Платы сетевого адаптера

Платы сетевого адаптера (СА) выступают в качестве физичес­кого интерфейса, или соединения, между компьютером и сетевым кабелем. Платы вставляются в слоты расширения материнской пла­ты всех сетевых компьютеров и серверов или интегрируются на ма­теринскую плату. Для обеспечения физического соединения между компьютером и сетью к разъему платы подключается сетевой кабель.

Плата СА выполняет:

• подготовку данных, поступающих от компьютера, к передаче по
сетевому кабелю;

• передачу данных другому компьютеру;

• управление потоком данных между компьютером и кабельной системой;

• прием данных из кабеля и перевод их в форму, понятную ЦП
компьютера.

Плата СА должна также указать свое местонахождение или се­тевой адрес, чтобы ее могли отличить от других плат сети. Сетевые адреса определены комитетом IEEE (Institute of Electrical and Electronics Engineers, Inc.), который закрепляет за каждым произво­дителем плат сетевого адаптера некоторый интервал адресов. Про­изводители зашивают эти адреса в микросхемы, поэтому каждый компьютер имеет свой уникальный номер, т.е. адрес в сети.

Перед тем, как послать данные по сети, плата СА проводит элек­тронный диалог с принимающей платой, в результате которого они устанавливают:

• максимальный размер блока передаваемых данных;

• объем данных, пересылаемых без подтверждения о получении;

• интервал между передачами блоков данных;

• интервал, в течение которого необходимо послать подтверждение;

• объем данных, который может принять плата без переполнения
буфера;

• скорость передачи.

Если новая (более сложная и быстрая) плата взаимодействует с устаревшей (медленной) платой, то они должны найти общую для них обеих скорость передачи. Схемы современных плат позволяют им приспособиться к низкой скорости старых плат. Каждая плата оповещает другую о своих параметрах, принимая чужие параметры и подстраиваясь к ним. После определения всех деталей начинается обмен данными.

Для правильной работы платы должны быть корректно установ­лены следующие параметры:

• номер прерывания (IRQ - interrupt query);

• базовый адрес порта;

 

• I/O.Базовый адрес памяти;

• тип трансивера.

Для обеспечения совместимости компьютера и сети плата СА должна соответствовать внутренней структуре компьютера (архитек­туре шины данных) и иметь соответствующий соединитель, подхо­дящий к типу кабельной системы.

Например, плата, которая нормально работает в компьютере Apple Macintosh в сети с топологией шина, не будет работать в ком­пьютере IBM в сети с топологией кольцо. Сеть топологии кольцо требует плату, которая физически отличается от применяемой в сети топологии шина, к тому же Apple использует другой метод сетевого взаимодействия.

7,5. Сетевые стандарты

Работа сети заключается в передаче данных от одного компью­тера к другому. В этом процессе можно выделить следующие задачи:

1. Распознавание данных.

2. Разбиение данных на управляемые блоки.

3. Добавление информации к каждому блоку о местонахождении
данных и получателе.

4. Добавление информации для синхронизации и проверки оши­бок.

5. Перемещение данных в сеть и отправка их по заданному адресу.
Сетевая ОС при выполнении этих задач строго следует опреде­ленному набору процедур. Эти процедуры называются протоколами.
Они регламентируют каждую сетевую операцию. Стандартные про­токолы позволяют программному и аппаратному обеспечению раз­ных производителей нормально взаимодействовать.

Существует два главных набора стандартов: эталонная модель OSI и ее модификация Project 802. Для понимания технической стороны функционирования сетей необходимо иметь представление об И этих моделях.

7.5,1. Эталонная модель OSI

В 1978 г. ISO (International Standards Organization) выпустила набор спецификаций, описывающих модель взаимодействия открытых |систем, т.е. систем, доступных для связи с другими системами. Это |был первый шаг к международной стандартизации протоколов. Все |системы могли теперь использовать одинаковые протоколы и стан-1дарты для обмена информацией. I В 1984 г. ISO выпустила новую версию своей модели, названную эталонной моделью взаимодействия открытых систем ISO. Эта вер­сия стала международным стандартом. Ее спецификации использу­ют производители при разработке сетевых продуктов, ее придержи­ваются при построении сетей. Полностью модель носит название ISO OSI (Open System Interconnection Reference Model). Для краткости будем ее называть модель OSI. Модель OSI не является сетевой архи­тектурой, так как не описывает службы и протоколы, используемые на каждом уровне. Она просто определяет, что должен делать каж­дый уровень. Важно также понимать, что эталонная модель не явля­ется чем-то реальным, таким, что обеспечивает связь. Сама по себе она не заставляет коммуникации функционировать и служит лишь для классификации. Она классифицирует то, что непосредственно работает, а именно - протоколы. Протоколом считается набор спе­цификаций, определяющих реализацию одного или нескольких уров­ней OSI. ISO разработала также стандарты для каждого уровня, хотя эти стандарты не входят в саму эталонную модель. Каждый из них был опубликован как отдельный международный стандарт.

Модель OSI имеет семь уровней. Каждому уровню соответствуют различные сетевые операции, оборудование и протоколы. Появление именно семи уровней было обусловлено функциональными особен­ностями модели.

Модель OSI без физического носителя показана на рис. 7.5.

Определенные сетевые функции, выполняемые на каждом уров­не, взаимодействуют только с функциями соседних уровней — вы­шестоящего и нижележащего. Например, Сеансовый уровень должен взаимодействовать только с Представительским и Транспортным уров­нями. Все эти функции подробно описаны.

Каждый уровень выполняет несколько операций при подготов­ке данных для доставки по сети на другой компьютер. Уровни отде­ляются друг от друга границами — интерфейсами. Все запросы от одного уровня к другому передаются через интерфейс. Каждый уро­вень, выполняя свои функции, пользуется услугами нижележащего уровня. Самые нижние уровни - 1-й и 2-й - определяют физичес­кую среду при передаче битов данных через плату СА и кабель. Са­мые верхние уровни определяют, каким способом реализуется дос­туп приложений к услугам связи.

Задача каждого уровня - предоставление услуг вышележащему уровню, маскируя при этом детали реализации этих услуг. Каждый

 

 

Протоколы хост-маршрутизатор сетевого, передачи данных и физического уровней

Рис. 7.5. Эталонная модель ОSI

 

уровень на компьютере-отправителе работает так, как будто он напрямую связан с соответствующим уровнем на компьютере-полу­чателе. Эта виртуальная связь показана на рис. 7.5 пунктирными ли­ниями. В действительности же связь осуществляется между соседни­ми уровнями одного компьютера. ПО каждого уровня реализует определенные сетевые функции в соответствии с набором прото­колов.

Перед отправкой в сеть данные разбиваются на пакеты, переда­ваемые между устройствами сети как единое целое. Пакет проходит последовательно все уровни ПО от прикладного до физического, при этом на каждом уровне к пакету добавляется форматирующая или адресная информация, необходимая для безошибочной передачи дан­ных по сети.

На принимающей стороне пакет также проходит через все уров­ни, но в обратном порядке, ПО каждого уровня анализирует инфор­мацию пакета, удаляет ту информацию, которая добавлена к пакету на таком же уровне отправителем, и передает пакет следующему уровню. По достижении пакетом Прикладного уровня вся служебная информация будет удалена, и данные примут свой первоначальный

вид.

Таким образом, только Физический уровень модели может не­посредственно послать информацию соответствующему уровню дру­гого компьютера. Информация на компьютере-отправителе и ком­пьютере-получателе должна пройти все уровни, начиная с того, с которого она посылается, и заканчивая соответствующим уровнем того компьютера, которым она принимается. Например, если Сете­вой уровень передает информацию с компьютера А, она спускается через Канальный и Физический уровни в сетевой кабель, затем по­падает в компьютер В, где поднимается через Физический и Каналь­ный уровни и достигает Сетевого уровня. В среде клиент-сервер при­мером такой информации служит адрес и результат контроля ошибок,

добавленные к пакету.

Взаимодействие смежных уровней осуществляется через интер­фейс. Интерфейс определяет услуги, которые нижний уровень пре­доставляет верхнему, и способ доступа к ним.

Рассмотрим каждый из семи уровней модели OSI и услуги, ко­торые они предоставляют смежным уровням.

Прикладной (Application) уровень. Уровень 7. Он представляет собой окно для доступа прикладных процессов к сетевым услугам. Услуги, которые он обеспечивает, напрямую поддерживают приложения пользователя. Прикладной уровень управляет общим доступом к сети, потоком данных и восстановлением данных после сбоев связи.

Уровень представления (Presentation). Уровень 6. Представитель­ский уровень определяет формат, используемый для обмена данны­ми между сетевыми компьютерами. Типичный пример работы служб Представительского уровня — кодирование передаваемых данных определенным стандартным образом. Уровень представления отвечает за преобразование протоколов, трансляцию и шифрование данных, смену кодовой таблицы и расширение графических команд. Кроме того, он управляет сжатием данных для уменьшения объема переда­ваемых бит.

Сеансовый уровень (Session). Уровень 5. Сеансовый уровень позво­ляет двум приложениям разных компьютеров устанавливать, исполь­зовать и завершать соединение, называемое сеансом. Сеанс может предоставлять еще и расширенный набор услуг, полезный для неко­торых приложений. Сеансовый уровень управляет диалогом между взаимодействующими процессами, устанавливая, какая из сторон, когда, как долго и т.д. должна осуществлять передачу.

Транспортный уровень (Transport). ' Уровень 4. Основная функция Транспортного уровня — принять данные от Сеансового уровня, раз­бить их при необходимости на небольшие части и передать Сетево­му уровню, гарантируя, что эти части в правильном порядке прибу­дут по назначению. Все это должно быть сделано эффективно и так, чтобы изолировать более высокие уровни от каких-либо изменений в аппаратной технологии. Транспортный уровень также следит за созданием и удалением сетевых соединений, управляет потоком со­общений, проверяет ошибки и участвует в решении задач, связан­ных с отправкой и получением пакетов. Примеры протоколов транс­портного уровня - TCP и SPX.

Сетевой уровень (Network), Уровень 3. Сетевой уровень управля­ет операциями подсети. Он отвечает за адресацию сообщений и пе­ревод логических адресов и имен в физические. Сетевой уровень раз­решает также проблемы, связанные с разными способами адресации и разными протоколами при переходе пакетов из одной сети в дру­гую, позволяя объединять разнородные сети. Примеры протоколов сетевого уровня — IP и IPX.

Уровень передачи данных или канальный (Data Link). Уровень 2. Основная задача Канального уровня — преобразовать способность Физического уровня передавать данные в надежную линию связи, свободную от необнаруженных ошибок с точки зрения вышестоящего Сетевого уровня. Эту задачу Канальный уровень выполняет при по­мощи разбиения входных данных на кадры размером от нескольких сот до нескольких тысяч байтов. Каждый следующий кадр данных передается только после получения и обработки кадра подтвержде­ния, посылаемого обратно получателем. Кадр — это логически организованная структура, в которую можно помещать данные. На рис. 7.6 представлен простой кадр данных, где идентификатор отправи­теля — адрес компьютера-отправителя, а идентификатор получателя — адрес компьютера-получателя. Управляющая информация исполь­зуется для маршрутизации, указания типа пакета и сегментации. CRC (Cyclical Redundancy Check — циклический код) позволяет выявить ошибки и гарантирует правильный прием информации.

 

Рис. 7.6. Кадр данных

Физический уровень (Physical). Уровень 1. Физический уровень осу­ществляет передачу неструктурированного, сырого, потока бит по физической среде (например, по сетевому кабелю). На этом уровне реализуются электрический, оптический, механический и функцио­нальный интерфейсы с кабелем. Физический уровень также форми­рует сигналы, которые переносят данные, поступившие ото всех вы­шележащих уровней. На этом уровне определяется способ соединения сетевого кабеля с платой СА и способ передачи сигналов по сетевому кабелю. Физический уровень отвечает за кодирование данных и син­хронизацию бит, гарантируя, что переданная единица будет воспри­нята именно как единица, а не как ноль. Уровень устанавливает дли­тельность каждого бита и способ перевода в электрические или оптические импульсы, передаваемые по сетевому кабелю.

 

 

7.5.2. Стандарт IEEE Project 802

 

 

Два нижних уровня модели OSI относятся к оборудованию, а именно: сетевой плате и кабелю. Для постановки более четких тре­бований к аппаратуре, которая работает на этих уровнях, ШЕЕ раз­работал расширения, предназначенные для разных сетевых плат и ка­белей. Эти расширения широко известны как Project 802, названные в соответствии с годом (1980) и месяцем (февраль) своего издания. Стандарты IEEE были опубликованы раньше модели OSI, но оба проекта разрабатывались примерно в одно время и при полном об­мене информацией. Это и привело к созданию двух совместимых продуктов.

Project 802 установил стандарты для физических компонентов сети — интерфейсных плат и кабельной системы, которые работают на Канальном и Физическом уровнях модели OSI. Эти стандарты, называемые 802-спецификациями, распространяются на платы СА, компоненты ГВС, компоненты сетей, использующих коаксиальный кабель и витую пару. 802-спецификации определяют способы, в со­ответствии с которыми платы СА осуществляют доступ к физичес­кой среде и передают по ней данные. Это соединение, поддержка и разъединение сетевых устройств. Выбор протокола канального уров­ня — наиболее важное решение при проектировании ЛВС. Этот про­токол определяет скорость сети, метод доступа к физической среде, тип кабелей, сетевые платы и драйверы.

Стандарты ЛВС, определенные Project 802, делятся на 16 кате­горий, каждая из которых имеет свой номер (от 802.1 до 801.16, на­пример, 802.6 - сеть масштаба города, MAN; 802.10 — безопасность сетей; 802.11 - беспроводные сети).

Два нижних уровня модели, Канальный и Физический, устанав­ливают, каким образом несколько компьютеров могут одновремен­но, не мешая друг другу, использовать сеть. IEEE Project 802 пред­назначен именно для. этих двух уровней. На рис.7.7 показаны Канальный уровень и два его подуровня.

Подуровень Управление логической связью (Logical Link Control, LLC) устанавливает и разрывает канал связи, управляет потоком дан­ных, производит упорядочение и вырабатывает подтверждение при­ема кадров.

Подуровень Управление доступом к среде (Media Access Control


Рис. 7.7. Подуровни Управление логической связью и Управление доступом к среде

MAC) контролирует доступ к среде передачи, определяет границы кадров, обнаруживает ошибки, распознает адреса кадров. Он также обеспечивает совместный доступ плат СА к Физическому уровню. Этот подуровень напрямую связан с платой СА и отвечает за безо­шибочную передачу данных между двумя компьютерами сети.

7.5.3. Драйверы устройств и OSI

Сетевые драйверы обеспечивают связь между платами СА и ра­ботающими на компьютере редиректорами. Редиректор - это часть сетевого ПО, которое принимает запросы ввода/вывода, относящи­еся к удаленным файлам, и переадресовывает их по сети на другой

компьютер.

Драйверы платы СА располагаются на подуровне Управления доступом к среде Канального уровня. Подуровень MAC отвечает за совместный доступ плат СА к Физическому уровню. Таким образом, драйвер платы СА обеспечивает связь между компьютером и самой платой, связывая, в конечном итоге, компьютер с сетью.

Производители плат СА обычно предоставляют драйверы разра­ботчикам сетевого ПО, которые включают их в состав своих продук­тов. Производители сетевых ОС публикуют списки совместимого оборудования - перечень устройств, драйверы которых протестиро­ваны на совместимость с ОС. Список совместимого оборудования HCL (Hardware Compatibility List) для сетевой ОС содержит сотни моделей плат СА от разных производителей.

7.6. Сетевые архитектуры

Сетевые архитектуры — это комбинация стандартов, топологий и протоколов, необходимых для создания работоспособной сети.

7.6.1. Методы доступа к сетевому ресурсу

Для использования сетевого ресурса необходимо получить дос­туп к нему. Существуют три метода доступа: множественный доступ с контролем несущей, доступ с передачей маркера, доступ по приори­тету запроса. Метод доступа — набор правил, которые определяют, как компьютер должен отправлять и принимать данные по сетевому кабелю.

Компьютеры получают доступ к сети поочередно на короткое время. Обычно несколько компьютеров в сети имеют совместный доступ к кабелю. Однако если два компьютера попытаются переда­вать данные одновременно, их пакеты столкнутся и будут испорче­ны. Возникает так называемая коллизия. Все компьютеры в сети дол­жны использовать один и тот же метод доступа, иначе произойдет сбой в работе сети, когда отдельные компьютеры, чьи методы доми­нируют, не позволят остальным осуществлять передачу.





Поделиться с друзьями:


Дата добавления: 2016-11-20; Мы поможем в написании ваших работ!; просмотров: 418 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Если президенты не могут делать этого со своими женами, они делают это со своими странами © Иосиф Бродский
==> читать все изречения...

2507 - | 2379 -


© 2015-2025 lektsii.org - Контакты - Последнее добавление

Ген: 0.012 с.