Альфа. Что в вашем Правиле 2 вы подразумевали под термином «подходящая»?
Гамма. Это совершенно безразлично. Может быть добавлена любая лемма, которая отвергается рассматриваемым контрапримером: любая такая лемма восстановит силу анализа доказательства.
Ламбда. Что такое! Значит, лемма вроде – «Все многогранники имеют по крайней мере 17 ребер» – будет иметь отношение к цилиндру! И всякая другая случайная догадка ad hoc будет вполне пригодной, если только ее можно будет отвергнуть при помощи контрапримера.
Гамма. А почему нет?
Ламбда. Мы уже критиковали устранителей монстров и исключений за то, что они забывают о доказательствах[83]. А теперь вы делаете то же самое, изобретая настоящий монстр: анализ доказательства без доказательства! Единственная разница между вами и устранителем монстров состоит в том, что вы хотели бы заставить Дельту сделать явными свои произвольные определения и включить их в теорему в качестве лемм. И нет никакой разницы между устранением исключений и вашим анализированием доказательства. Единственным предохранителем против таких методов ad hoc будет употребление подходящих лемм, т.е. лемм, соответствующих духу мысленного эксперимента! Или вы хотите изгнать из математики доказательства и заменить их глупой формальной игрой?
Гамма. Лучше это, чем ваш «дух мысленного эксперимента»! Я защищаю объективность математики против вашего психологизма.
Альфа. Благодарю вас, Ламбда, вы снова поставили мой вопрос: новую лемму не изобретают с потолка, чтобы справиться с глобальным, но не локальным контрапримером; скорее, с усиленной тщательностью рассматривают доказательство и в нем открывают эту лемму. Поэтому я, дорогой Тета, не делал скрытых лемм и я, дорогой Каппа, не проводил их «контрабандой» в доказательство. Доказательство содержит все такие леммы, но зрелый математик понимает все доказательство уже по короткому очерку. Мы не должны смешивать непогрешимое доказательство с неточным анализом доказательства. Все еще существует неопровержимая главная теорема – «Все многогранники, над которыми можно выполнить мысленный эксперимент, или, короче, все многогранники Коши будут эйлеровыми». Мой приблизительный анализ доказательства провел пограничную линию для класса многогранников Коши карандашом, который – я допускаю – не был особенно острым. Теперь эксцентрические контрапримеры учат нас острить наш карандаш. Но, во-первых, ни один карандаш не является абсолютно острым (и если мы переострим его, то он сломается), и, во-вторых, затачивание карандаша не является творческой математикой.
Гамма. Я сбился с толку. Какова же ваша позиция? Сначала вы были чемпионом по опровержениям.
Альфа. Ох, мне все больнее! Зрелая интуиция сметает в сторону споры.
Гамма. Ваша первая зрелая интуиция привела вас к «совершенному анализу доказательства». Вы думали, что ваш «карандаш» был абсолютно острым.
Альфа. Я забыл о трудностях лингвистических связей – особенно с педантами и скептиками. Но сердцем математики является мысленный эксперимент – доказательство. Его лингвистическая артикуляция – анализ доказательства – необходима для сообщения, но не относится к делу. Я заинтересован в многогранниках, а вы в языке. Разве вы не видите бедности ваших контрапримеров? Они лингвистичны, но не многогранны.
Гамма. Тогда опровержение теоремы только выдает нашу неспособность понять ее скрытые леммы? Такая «теорема» будет бессмысленна, пока мы не поймем ее доказательства?
Альфа. Так как расплывчатость языка делает недостижимой строгость анализа доказательства и превращает образование теорем в бесконечный процесс, то зачем же беспокоиться о теореме? Работающие математики этого, конечно, не делают. Если будет приведен еще какой-нибудь незначительный контрапример, то они не допустят, чтобы их теорема была отвергнута, но самое большее, что «область ее применимости должна быть подходящим образом сужена».
Ламбда. Итак, вы не заинтересованы ни в контрапримерах, ни в анализе доказательства, ни во включении лемм?
Альфа. Это правда. Я отбрасываю все ваши правила. Вместо них я предлагаю только одно единственное: стройте строгие (кристально ясные) доказательства.
Ламбда. Вы придерживаетесь мнения, что строгость анализа доказательства недостижима. А достижима ли строгость доказательства? Разве «кристально ясные» мысленные эксперименты не могут привести к парадоксальным или даже противоречивым результатам?
Альфа. Язык расплывчат, но мысль может достичь абсолютной строгости.
Ламбда. Но ведь ясно, что «на каждой стадии эволюции наши отцы думали, что они достигли ее. Если они обманывали себя, то разве и мы также не плутуем сами с собой?»[84]
Альфа. «Сегодня достигнута абсолютная строгость»[85]. (Смех в аудитории)[86].
Гамма. Эта теория «кристально ясного» доказательства представляет чистый психологизм[87].
Альфа. Все же лучше, чем логико-лингвистический педантизм вашего анализа доказательства.[88]
Ламбда. Отбросив бранные слова, я тоже являюсь скептиком в отношении вашего понимания математики как «существенно безъязычной деятельности ума»[89]. Каким образом деятельность может быть истинной или ложной? Только членораздельная мысль может питать истину. Доказательство может быть недостаточным: нам также надо установить, что, доказывает доказательство. Доказательство представляет только одну стадию работы математика, за которой следует анализ доказательства и опровержения и которая заключается строгой теоремой. Мы должны комбинировать «строгость доказательства» со «строгостью анализа доказательства».
Альфа. Вы все еще надеетесь, что в конце дойдете до совершенно строгого анализа доказательства? Если так, то скажите мне, почему вы, «стимулированные» цилиндром, не начали с формулировки вашей новой теоремы? Вы только указали ее. Ее длина и сложность заставили бы нас смеяться от отчаяния. И это только после первого из ваших новых контрапримеров! Вы заменили нашу первоначальную теорему последовательностью все более точных теорем, – но только в теории. А как относительно практики этой релятивизации? Все более и более эксцентрические контрапримеры будут учитываться все более тривиальными леммами, давая «порочную бесконечность»[90] все более длинных и сложных теорем[91]. Если мы чувствовали животворность критики, когда она казалась приводящей к истине, то теперь, когда она вообще разрушает всякую истину и гонит нас бесконечно и бесцельно, она, конечно, будет разочаровывающей. Я останавливаю эту порочную бесконечность в мысли, но в языке вы никогда не остановите ее.
Гамма. Но я никогда не говорил, что здесь необходимо бесконечное множество контрапримеров. В некотором пункте мы можем дойти до истины и тогда поток опровержений прекратится. Но, конечно, мы не будем знать, когда это будет. Решающими являются только опровержения – доказательства же относятся к области психологии[92].
Ламбда. Я все-таки верю, что свет абсолютной достоверности вспыхнет, когда взорвутся опровержения!
Каппа. А взорвутся ли они? А что если бог так создал многогранники, что все правильные общие их определения, формулированные человеческим языком, будут бесконечно длинными? Разве не будет богохульным антропоморфизмом предполагать, что (божеские) верные теоремы обладают конечной длиной?
Будьте откровенны; по той или другой причине нам всем надоели опровержения и складывание теорем по кусочкам. Почему бы нам не сказать «шабаш» и прекратить игру? Вы уже отказались от «Quod erat demonstrandum». Почему бы не отказаться также и от «Quod erat demonstratum[93]»? Ведь истина только для бога.
Тета (в сторону). Религиозный скептик – худший враг науки!
Сигма. Не будем чрезмерно драматизировать! В конце концов дело идет лишь об узкой полутени неясности. Просто, как я сказал раньше, не все предложения будут или истинными, или ложными. Есть и третий класс, который я хотел бы теперь назвать «более или менее строгими».
Тета (в сторону). Трехзначная логика – конец критического рационализма!
Сигма… и мы область их применимости определяем с более или менее адекватной строгостью.
Альфа. Адекватной чему?
Сигма. Адекватной решению задачи, которую мы хотим решить.
Тета (в сторону). Прагматизм! Разве уж все потеряли интерес к истине?
Каппа. Или адекватной Zeitgeist! «Довлеет дневи строгость его»[94].
Тета. Историзм! (Падает в обморок.)
Альфа. Правила Ламбды для «строгого анализа доказательства» лишают математику ее красоты, дарят нам дотошный педантизм длинных, сложных теорем, наполняющих скучные толстые книги, и могут даже при случае посадить нас в порочную бесконечность. Каппа ищет выхода в условности, Сигма в математическом прагматизме. Какой выбор для рационалиста!
Гамма. Должен ли такой рационалист насладиться «строгими доказательствами» Альфы, его нечленораздельной интуицией, «скрытыми леммами», осмеянием принципа обратной передачи ложности и исключением опровержений? Должна ли математика не иметь никаких отношений с критицизмом и логикой?
Бета. Во всяком случае я устал от всей этой, не приводящей к решению, словесной грызни. Я хочу заниматься математикой и я не заинтересован философскими трудностями оправдания ее оснований. Даже если рассудок не в состоянии дать такое оправдание, то меня успокаивает мой природный инстинкт[95].
Я чувствую, что у Омеги есть интересная коллекция возможных доказательств – я лучше бы послушал их.
Омега. Но я помещу их в «философскую» оболочку!
Бета. Мне нет дела до упаковки, если внутри имеется что-нибудь.
Замечание. В этом отделе я попытался показать, каким образом выступление математического критицизма было движущей силой в поисках «оснований» математики.
Сделанное нами различие между доказательством и анализом доказательства и соответствующее различение строгости доказательства и строгости анализа доказательства, по-видимому, является решающим. Около 1800 г. строгость доказательства (кристально ясный мысленный эксперимент или конструкция) противопоставлялась путаной аргументации и индуктивному обобщению. Именно это подразумевал Эйлер под термином «rigida deinonstratio», и на этом понятии была основана идея Канта о непогрешимой математике [см. его пример математического доказательства в книге Kant I. (1781). Kritik der reinen Vernunft. Riga, стр. 716 – 717]. Точно так же думали, что человек доказывает то, что он вознамерился доказать. Никому не приходило в голову, что словесное выражение мысленного эксперимента сопряжено с какой-нибудь реальной трудностью. Аристотелева формальная логика и математика были двумя совершенно раздельными дисциплинами – математики считали первую совершенно бесполезной. Доказательство мысленного эксперимента имело полную убедительность без какой-нибудь формы «логической» структуры.
В начале XIX в. поток контрапримеров вызвал смущение. Так как доказательства были кристально ясными, то опровержения должны были быть занятными шалостями, должны быть полностью отделены от несомненных доказательств. Введенная Коши революция строгости базировалась на эвристическом нововведении, что математик не должен останавливаться на доказательстве: он должен пойти вперед и выяснить, что именно он доказал путем перечисления исключений, или, лучше, установления безопасной области, в пределах которой доказательство является справедливым. Но Коши – или Абель – не видели какой-либо связи между обеими задачами. Им никогда не приходило в голову, что если они открыли исключение, то им следовало бы еще раз обратить внимание на доказательство. (Другие практиковали устранение или приспособление монстров, или даже «закрывали глаза» – но все соглашались, что доказательство представляет табу и не может иметь никакого дела с «исключениями».)
Происшедший в XIX в. союз логики и математики имел два основных источника: неевклидову геометрию и вейерштрассову революцию строгости. Этот союз привел к объединению доказательства (мысленного эксперимента) и опровержений и дал возможность развивать анализ доказательства, постепенно вводя дедуктивные формы в мысленный эксперимент доказательства. Эвристическим нововведением было то, что мы назвали «методом доказательства и опровержений»: оно впервые соединило логику и математику. Вейерштрассова строгость одержала победу над ее реакционными оппонентами с устранениями монстров и скрытыми леммами, которые пользовались лозунгами вроде «скуки от строгости», «искусственности против красоты» и т.д. Строгость анализа доказательства стала выше строгости доказательства, но большинство математиков мирилось с таким педантизмом лишь до тех пор, пока он обещал им полную достоверность.
Теория множеств Кантора, давшая еще одну жатву неожиданных опровержений «строго доказанных» теорем, обратила многих членов старой гвардии Вейерштрасса в догматиков, всегда готовых сражаться с «анархистами» при помощи устранения новых монстров или отыскания «скрытых лемм» в их теоремах, которые представляли последнее слово строгости, и в то же время карали «реакционеров» более старого типа за такие же грехи.
Затем некоторые математики поняли, что стремление к строгости анализа доказательства в методе доказательства и опровержений ведет к порочной бесконечности. Началась «интуиционистская» контрреволюция; разрушающий логико-лингвистический педантизм анализа доказательства был осужден и для доказательства были изобретены новые экстремистские стандарты строгости, математика и логика были разведены еще раз.
Логики пытались спасти это супружество и провалились на парадоксах. Гильбертова строгость превратила математику в паутину анализов доказательства и потребовала остановки их бесконечных спусков путем кристально ясной совместимости доказательств с интуиционистской метатеорией. «Обосновательный слой», область не подлежащего критике предварительного знания (Uncriticisable familiarity), переместился в мысленные эксперименты математики. (См. Lakatos I. (1962). Infinite Regress and the foundations of mathematics, Aristotelian sotiety supplementary volume. 36, стр. 179–184.)
При каждой «революции строгости» анализ доказательства проникал все глубже в доказательства вплоть до «обосновательного слоя» (foundational layer) хорошо знакомого основного знания (familiar background knowledge)[96], где верховно правила кристально ясная интуиция, строгость доказательства, а критика изгонялась. Таким образом, различные уровни строгости отличаются только местом, где они проводят линию между строгостью анализа доказательства и строгостью доказательства, т.е. местом, где должен остановиться критицизм и должно начаться подтверждение. «Достоверность» никогда не может быть достигнута, «основания» никогда не могут быть обоснованы, но «хитрость разума» превращает всякое увеличение строгости в увеличение содержания, в цель математики. Но эта история лежит вне пределов настоящего исследования.