Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Взаимосвязь определителя большего порядка и меньшего порядка. Разложение по строке.




Томский государственный университет систем управления и радиоэлектроники

Приходовский М.А.

Математика

Учебное пособие

(курс лекций)

Й семестр

Часть 1

для специальности:

09.03.03 «прикладная информатика в экономике»

(группы 446-1 и 446-2)

Томск

ТУСУР


Настоящее электронное учебное пособие составлено и скорректировано с учётом реального проведения лекций на ФСУ (профилирующая кафедра АСУ) в группах 446-1 и 446-2 осенью 2016 года.

 


 

Оглавление.

Часть 1 (сентябрь - октябрь)

Глава 1. МАТРИЦЫ.

§ 1. Действия над матрицами.

§ 2. Определители.

§ 3. Обратная матрица.

§ 4. Ранг матрицы.

§ 5. Элементы векторной алгебры.

Глава 2. СИСТЕМЫ ЛИНЕЙНЫХ УРАВНЕНИЙ.

§ 1. Введение, основные методы решения.

§ 2. Неоднородные системы с произвольной матрицей.

§ 3. Системы линейных однородных уравнений.

Глава 3. ЛИНЕЙНЫЕ ОПЕРАТОРЫ.

§ 1. Введение, основные понятия

§ 2. Собственные векторы

§ 3. Квадратичные формы.

Глава 4. АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ.

§ 1. Прямая на плоскости

§ 2. Плоскость в пространстве

§ 3. Прямая в пространстве

§ 4. Кривые и поверхности

 

Часть 1 (ноябрь - декабрь)

Глава 5. ОСНОВЫ МАТЕМАТИЧЕСКОГО АНАЛИЗА.

§1. Множества и функции.

§2. Пределы.

§3. Бесконечно-малые и бесконечно-большие.

§4. Непрерывность.

Глава 6. ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ.

§1. Введение, основные методы.

2. Частные производные и градиент.

§3. Уравнение касательной, формула Тейлора.

§4. Экстремумы и строение графика.

§5. Основные теоремы дифф. исчисления


ЛЕКЦИЯ № 1. 02.09.2016

Глава 1. МАТРИЦЫ.

Действия над матрицами.

Определение матрицы. Матрицей размера называется прямоугольная таблица, состоящая из чисел (либо других объектов, например, функций), содержащая m строк и n столбцов.

Каждый элемент обозначается , где это номер строки, в которой он расположен, а - номер столбца.

! Обратите внимание: количество строк - это то же самое, что количество элементов в столбце, а количество столбцов равно количеству элементов в строке (заметим, что от каждого элемента 1-й строки начинается столбец, то есть сколько чисел в строке, столько и столбцов).

Если , то есть матрица А имеет размер то она называется квадратной матрицей порядка n.

Примеры матриц из жизни:

1. Таблица результатов ЕГЭ по нескольким предметам в группе учеников.

2. Таблица расстояний между каждой парой из n городов.

Кратчайшее расстояние между городами:

  Томск Новосибирск Кемерово
Томск      
Новосибирск      
Кемерово      

По главной диагонали 0, потому что до этого же города расстояние равно 0.

3. Расписание занятий. День недели и номер пары, каждый элемент - номер аудитории в этот день в это время.

4. Шахматная доска, 64 элемента, квадратная матрица порядка 8.

Сложение и вычитание матриц размера .

Эти операции определяются поэлементно, то есть суммируется или вычитается каждая соответствующая пара элементов и .

Примеры:

+ = ; =

Умножение матрицы на константу определяется следующим образом. В матрице все элементы умножены на коэффициент , то есть равны .

Умножение двух матриц.

* Нужно вспомнить из школьного курса операцию скалярного произведения двух векторов.

Если есть 2 матрицы, одна размера , другая , то их размеры называются согласованными. Такие матрицы можно умножать друг на друга.

Операция умножения матриц определяется следующим образом. Мысленно разобьём первую матрицу на строки, вторую - на столбцы. Для каждой строки 1-й матрицы и каждого столлбца 2-й матрицы определено скалярное произведение. Всего существует всевозможных скалярных произведений строк (1-й матрицы) на столбцы (2-й матрицы). Именно из них и состоит произведение, это матрица размера

Пример: = .

Для матриц размеров и существуют оба произведения, и . Но произведение в примере выше оказалось бы не матрицей 2 порядка, а 3 порядка, то есть из 9 элементов.

 

Умножение квадратных матриц.

В этом случае размеры всегда согласованы, и произведение - это тоже матрица .

2 примера: = , =

обратите внимание, что даже для квадратных матриц далеко не всегда выполняется закон коммутативности, здесь .

* Существует такая матрица, которая во множестве матриц обладает свойством, аналогичным 1 во множестве чисел, то есть . Но как мы видели только что, матрица из всех единиц этим свойством не обладает, а вот если единицы только по главной диагонали, а вокруг - нули, то такое свойство будет выполняться.

Единичная матрица Е. Строение: , при .

2-го порядка: , 3 порядка:

= и = .

(Аналог среди матриц первого порядка: число 1).

 

Свойства действий над матрицами:

коммутативность сложения

ассоциативность сложения

и дистрибутивность

ассоциативность умножения

и

.

 

О взаимосвязи матрицы с системой векторов.

Если в плоскости 2 вектора, т.е. каждый имеет по 2 координаты, можно построить матрицу 2 порядка. Аналогично, если дано 3 вектора в пространстве - можно построить матрицу 3 порядка.

Матрица, соответствующая этой векторной системе .

Определители.

Пусть дана матрица 2 порядка. .

Определителем квадратной матрицы порядка 2 называется такое число:

(произведение элементов главной диагонали, минус произведение элементов побочной диагонали).

Геометрический смысл: модуль определителя равен площади параллелограмма, сторонами которого являются 2 вектора, координаты которых расположены по строкам (либо столбцам) матрицы.

Если бы мы просто вычисляли площадь параллелограмма, построенного на векторах (2,1) и (1,2), где ни один вектор не расположен вдоль координатной оси, то понадобилось бы найти длину основания, затем высоту. А с помощью определителя, S вычисляется гораздо короче.

Примеры. .

поменяем местами строки, изменится знак:

.

Заметим, что при введении определителя, умножаемые элементы всегда расположены так, что 2 из них не находятся в одной строке или в одном столбце. Кстати, кроме главной и побочной диагонали, в матрице порядка 2 таких наборов элементов больше нет.

 

Вообще, если расположить первые n натуральных чисел 1,2,3,..., n в некотором порядке, то есть не по возрастанию, а перепутать каким-то образом, то они образуют так наз. «перестановку».

Лемма. Существует n! перестановок порядка n.

Для n = 2 очевидно, перестановки только (12) и (21).

При n = 3. (123) (132) (213) (231) (312) (321)

На первом месте одно из 3 чисел, при этом оставшиеся 2 можно расставить на два места именно 2 способами. Получается 3*2 = 6 способов. (Заметим, что 6 = 3!)

Дальше, доказательство по индукции. Пусть теперь для (n-1) этот факт доказан. Рассмотрим для n. На первом месте может стоять любое из n чисел, и при каждой из этих ситуаций, остаётся (n-1) число, которые должны занять (n-1) место, а это возможно (n-1)! способами. Итак, получается что как раз равно n!, что и требовалось доказать.

 

Каждый набор элементов, которые мы перемножаем в определителе 2 порядка, можно задать с помощью перестановки: главная диагональ (12) побочная диагональ (21). Число i на месте j показывает, что когда мы находимся в строке номер j то надо выбрать элемент, находящийся в столбце номер i.

Большой прямоугольник в 1 строке, выбираем из 1 столбца, а когда он спустился во 2 строку, там из 2 столбца. Как на схеме:

таким путём мы как раз и получаем главную диагональ с помощью перестановки (12).

 

Определитель 3 порядка, примеры, методы вычисления.

= .

Запомнить легче всего так: с помощью произведений по 3 параллельным линиям.


Надо дописать копии 1 и 2 столбца справа, и соединить по 3 параллельных линии: главная диагональ и параллельные ей (показаны зелёным цветом), затем побочная диагональ и параллельные ей (показаны красным). Умножить тройки чисел по 3 зелёным линиям, и взять их со знаком «+» а по красным прибавить со знаком «—». (Кстати, вместо столбцов справа можно дописать две строки снизу, и получится то же самое).

Можно запомнить и с помощью треугольников, например, соответствует

Это один из двух треугольников, для которого главная диагональ - это средняя линия. Второй такой треугльник это .

 

В записи определителя 3 порядка =

каждому элементу можно поставить в соответствие перестановку из 3 чисел.

Представьте себе прямоугольник, который сначала в 1-й строке, а затем спускается ко 2-й и 3-й, внутри него вправо и влево может двигаться квадрат, указывающий на какой-то из элементов. Запишем, в каком № столбца взяли элемент, когда находились в 1-й строке, затем так же во 2-й и 3-й. Например, для получится (231):

для соответствует (123) и т.д. напишем под каждым элементом свою перестановку:

(123) (231) (312) (321) (132) (213)

Видим, что при этом учтены все возможные перестановки, количество которых 3! = 6.

Рассмотрим подробнее, как знак определяется по перестановкам. Назовём инверсией такую ситуацию, когда большее число в перестановке расположено раньше, чем меньшее. Обозначим дугой каждую инверсию:

Если инверсий нечётное количество (1 или 3), то знак «-», если чётное (0 или 2) то «+».

Фактически, умножаем на , где k - число инверсий. Знак каждого произведения зависит от чётности или нечётности перестановки.

Причём, все рассмотренные наборы элементов, которые перемножаются между собой, обладают тем свойством, что никакие 2 из 3 не находятся в одной и той же строке либо одном и том же столбце. Таких наборов всего 6, и они все учтены. А для матрицы порядка 2 таких наборов всего 2, поэтому там определитель состоит всего из 2 слагаемых. Почему же они не могут быть в одной строке или столбце? Ответ простой: ведь перестановка состоит из разных чисел, то есть там нет одинаковых на двух местах, поэтому из одного и того же столбца 2 раза мы не выберем. Из одной строки тем более: находясь в некоторой строке, мы выбираем элемент только 1 раз.

А для матрицы 4 порядка потребуется найти все четвёрки элементов, так чтобы никакие два не оказывались в одной строке или одном столбце. Их будет 24 = 1*2*3*4 = 4!

 

Пример. = 1*2*4 + 1*3*0 + 2*0*1 — 0*2*2 — 1*3*1 — 4*0*1 = 8 — 3 = 5.

 

Пример. = 1*3*6 + 4*0*2 + 8*7*3 — 8*3*2 — 1*0*3 — 6*4*7 = 18 + 0 + 168 — 48 — 0 — 168 = -30.

 

 


ЛЕКЦИЯ № 2. 09.09.2016

Взаимосвязь определителя большего порядка и меньшего порядка. Разложение по строке.

Запишем разложение определителя порядка 3.

= .

Вынесем за скобку элементы первой строки (они есть в 2 из 6 слагаемых): .

То, что получилось в скобках, называют алгебраическими дополнениями элементов соответственно .

Выражение в 1-й скобке называется алгебраическим дополнением к элементу , соответственно

- алгебраическим дополнением к , - алгебраическим дополнением к .

 

Заметим, что , , .

Если для элемента и вычеркнуть всю строку и весь столбец, где он находится, образуется подматрица порядка (n-1). Определитель подматрицы порядка (n-1), которая получилась путём вычёркивания строки номер i и столбца номер j, называется дополняющим минором к элементу . Всего таких миноров , например для матрицы 3 порядка их будет 9 штук. Минор, соответствующий элементу , обозначается .

Мы видим, что в одних случаях алгебраическое дополнение равно минору, а где-то противоположно ему по знаку. Взаимосвязь алгебраических дополнений и миноров для произвольных i,j:

, то есть знаки меняются в шахматном порядке, для верхнего левого элемента знак «+».

Итак, определители можно вычислять разложением по строке:

= .

Общая запись в произвольных обозначениях: .

Разложение возможно по любой строке или по любому столбцу. Так, например, в той же рассмотренной ранее записи можно собрать пары слагаемых, содержащих и точно так же вынести за скобку, получится = =

= здесь чередование знака начинается с минуса, что и должно быть в соответствии с шахматным порядком, о чём сказано выше.

 

Заметим, что если матрица треугольная, то для вычисления можно просто умножить все числа по диагонали.

.

Это объясняется очень просто: если разложить по строке, где есть всего один ненулевой элемент и (n-1) нулей, то сразу переходим к минору меньшего порядка, для него получается аналогичное действие, и так до конца. Рассмотрим на примере:

= = = = 6.

Для диагональных матриц, как и для треугольных, верен такой же факт.

Рассмотрим ещё пример с определителем треугольной матрицы 4 порядка:

= = = 12.

Поэтому приведение к треугольному виду очень часто используется для вычисления определителей. Метод Гаусса, который будет подробно изучен в теме «системы уравнений», в полной мере может применяться и для вычисления определителей. Если обнулить элементы ниже главной диагонали, то вычисление определителя сильно упростится.

 





Поделиться с друзьями:


Дата добавления: 2016-11-18; Мы поможем в написании ваших работ!; просмотров: 472 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Не будет большим злом, если студент впадет в заблуждение; если же ошибаются великие умы, мир дорого оплачивает их ошибки. © Никола Тесла
==> читать все изречения...

2574 - | 2263 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.012 с.