Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Карбоновые кислоты и их функциональные производные




Органические соединения, содержащие карбоксильную группу –СООН, относятся к классу кислот.

Биологически важные карбоновые кислоты:

Кислоты (тривиальное название) Название аниона Формула кислоты
Одноосновные    
муравьиная формиат HCOOH
уксусная ацетат CH3COOH
масляная бутират CH3(CH2)2COOH
валериановая валерат CH3(CH2)3COOH
Непредельные кислоты    
акриловая акрилаты СН2 = СН- СООН
кротоновая кротонат СН3 – СН = СН - СООН
Ароматические    
бензойная бензоат C6H5COOH
Дикарбоновые кислоты    
щавелевая кислота оксалаты НООС - СООН
малоновая малонаты НООС-СН2 - СООН
янтарная сукцинаты НООС-СН2 – СН2 -СООН
глутаровая глутараты НООС –(СН2)3 - СООН
Непредельные дикарбоновые    
Фумаровая (транс-изомер) фумараты НООС-СН=СН-СООН

Кислотные свойства карбоновых кислот:

RCOOH RCOO- + Н+

 

При диссоциации образуется карбоксилат анион, в котором отрицательный заряд равномерно распределяется между кислородными атомами, что увеличивает стабильность этой частицы. Сила карбоновых кислот зависит от длины радикала (чем больше радикал, тем слабее кислота) и заместителей (электроноакцепторные заместители усиливают кислотность). CI3COOH намного сильнее СН3СООН. Дикарбоновые кислоты сильнее одноосновных.

Функциональные производные карбоновых кислот:

Карбоновые кислоты проявляют высокую реакционную способность. Они вступают в реакции с различными веществами и образуют функциональные производные, т.е. соединения, полученные в результате реакций по карбоксильной группе.

1. Образование солей. Карбоновые кислоты обладают всеми свойствами обычных кислот. Они реагируют с активными метал­лами, основными оксидами, основаниями и солями слабых кис­лот:

2RCOOH + Мg → (RCOO)2Mg + Н2,

2RCOOH + СаО → (RCOO)2Ca + Н2О,

RCOOH + NaOH → RCOONa + Н2О,

RCOOH + NaHCO3→ RCOONa + Н2О + СО2↑.

Карбоновые кислоты — слабые, поэтому сильные минераль­ные кислоты вытесняют их из соответствующих солей:

CH3COONa + HCl → СН3СООН + NaCl.

Соли карбоновых кислот в водных растворах гидролизованы:

СН3СООК + Н2О СН3СООН + КОН.

Отличие карбоновых кислот от минеральных заключается в возможности образования ряда функциональных производных.

2. Образование функциональных производных карбоновых кис­лот. При замещении группы ОН в карбоновых кислотах различ­ными группами (X) образуются функциональные производные кислот, имеющие общую формулу R—СО—X; здесь R означает алкильную либо арильную группу. Хотя нитрилы имеют другую общую формулу (R—CN), обычно их также рас­сматривают как производные карбоновых кислот, поскольку они могут быть получены из этих кислот.

Хлорангидриды получают действием хлорида фосфора (V) на кислоты:

R-CO-OH + РСl 5 → R-CO-Cl + РОСl3 + HCl.

Ангидриды образуются из карбоновых кислот при действии водоотнимающих средств:

2R-CO-OH + Р2О5 → (R-CO-)2O + 2НРО3.

Сложные эфиры образуются при нагревании кислоты со спир­том в присутствии серной кислоты (обратимая реакция этерификации):

Сложные эфиры можно также получить при взаимодействии хлорангидридов кислот и алкоголятов щелочных металлов:

R-CO-Cl + Na-O-R' → R-CO-OR' + NaCl.

Амиды образуются реакцией хлорангидридов карбоновых кислот с аммиаком:

СН3-СО-Сl + NН3 → СН3-СО-NН2 + HCl.

Кроме того, амиды могут быть получены при нагревании ам­монийных солей карбоновых кислот: to

CH3-COONH4 → CH3-CO-NH2 + Н2О

При нагревании амидов в присутствии водоотнимающих средств они дегидратируются с образованием нитрилов:

p2o5

CH3-CO-NH2 → CH3-C≡N + Н2О

 

3. Cвойства карбоновых кислот, обусловленные наличием угле­водородного радикала. Так, при действии галогенов на кислоты в присутствии красного фосфора образуются галогензамещенные кислоты, причем на галоген замещается атом водорода при со­седнем с карбоксильной группой атоме углерода (α-атоме): ркр.

СН3-СН2-СООН + Вr2 → СН3-СНВr-СООН + НВr

 

4. Непредельные карбоновые кислоты способны к реакциям при­соединения:

СН2=СН-СООН + Н2 → СН3-СН2-СООН,

СН2=СН-СООН + Сl2 → СН2Сl-СНСl-СООН,

СН2=СН-СООН + HCl → СН2Сl-СН2-СООН,

СН2=СН-СООН + Н2O → НО-СН2-СН2-СООН,

 

Две последние реакции протекают против правила Марковникова.

Непредельные карбоновые кислоты и их производные способ­ны к реакциям полимеризации.

5. Окислительно-восстановительные реакции карбоновых кислот:

Карбоновые кислоты при действии восстановителей в при­сутствии катализаторов способны превращаться в альдегиды, спирты и даже углеводороды.

Муравьиная кислота НСООН отличается рядом особенностей, поскольку в ее составе есть альдегидная группа.

Муравьиная кислота — сильный восстановитель и легко окис­ляется до СО2. Она дает реакцию "серебряного зеркала":

НСООН + 2[Ag(NH3)2]OH → 2Ag + (NH4)2CO3 + 2NH3 + H2O,

или в упрощенном виде в аммиачном растворе при нагревании:

НСООН + Аg2О → 2Аg + СО2 + Н2О.

Насыщенные карбоновые кислоты устойчивы к действию кон­центрированных серной и азотной кислот. Исключение составля­ет муравьиная кислота:

Н24(конц)

НСООН → СО + Н2О

6. Реакции декарбоксилирования. Насыщенные незамещенные монокарбоновые кислоты из-за большой прочности связи С—С при нагревании декарбоксилируются с трудом. Для этого необхо­димо сплавление соли щелочного металла карбоновой кислоты со щелочью:

to

CH3-CH2-COONa + NaOH → С2Н6↑ + Na2CO3

Двухосновные карбоновые кислоты легко отщепляют СО2 при нагревании:

to

НООС-СН2-СООН → СН3СООН + CO2

 





Поделиться с друзьями:


Дата добавления: 2016-11-18; Мы поможем в написании ваших работ!; просмотров: 520 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Ваше время ограничено, не тратьте его, живя чужой жизнью © Стив Джобс
==> читать все изречения...

2185 - | 2125 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.01 с.