Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Адаптивные методы среднесрочного прогнозирования модификация метода стохастической аппроксимации




Термин адаптация выступает в 3х аспектах:

Адаптация как св-во системы приспосабливаться к возможным изменениям функционирования; 2) Адаптация как сам процесс приспосабливания адаптивной системы; 3) адаптация как метод, основанный на отработке поступающей информации и приспособленный для достижения некоторого критерия оптимизации.

Под адаптацией понимается способность системы использовать получение новой информации для приближения своего поведения и структуры к оптимальным.

Если системы не адаптируются, то они перестают функционировать оптимально и перестают существовать. Адаптация не происходит мгновенно, а происходит постепенно в силу инерционности большинства систем. В процессе адаптации системы эволюционируют. Это св-во необходимо учесть в прогнозировании. Прогнозные модели должны быть адаптивными:

· Для целей краткосрочного прогнозирования это означает необходимость «уловить» последние по времени сиюминутные отклонения от сложившихся тенденций, которые вызваны кратковременным действием некоторых факторов.

· В случае среднесрочного прогнозирования нет смысла учитывать текущие кратковременные отклонения от сложившихся тенденций – они в скором времени прекратятся. Необходимо «уловить» наметившиеся в последние моменты наблюдений неминуемые изменения в тенденциях развития, и, учитывая их, откорректировать прогнозную модель.

Все методы по использованию принципа адаптации делятся на: 1) Методы корректировки коэффициентов прогнозных моделей и 2) методы взвешивания данных. В первой группе наиболее эффективным считается применение метода стохастической аппроксимации.

Объект управления настолько сложен, что рассматривается как «черный ящик»:

Если перед исследователем стоит задача найти такое упр. воздействие X на систему, чтобы на выходе из нее было достигнуто некое оптимальное значение Y, численно равное наперед заданному U, то для этого используют управляющее воздействие. В допустимой области X берем произвольно x[0], проводим эксперимент с данным значением входа в систему и наблюдаем на выходе некоторое значение Y(x[0]). У исследователя есть первая пара взаимосвязи между входной переменной и выходной. Если бы отклик был стационарным, можно было бы с помощью конечного множества наблюдений собрать достаточное множество пар {x[n], Y(x[n])} и оценить коэффициент регрессии взаимосвязи, с помощью которого можно решить задачу. Но изучаемый объект нестационарен.

Для поиска оптимального значения х выбирают убывающую с ростом n последовательность положительных чисел γ[n]. Необходимо определить такое значение x1 принадлежащие множеству X1, чтобы: Y(x)=U. Для выбора значения X в следующем эксперименте используется рекуррентное соотношение Роббинса-Монро:

. - параметр демпфирования колебаний.

Алгоритмы метода стохастической аппроксимации:

· С постоянным шагом . Напр. ½.

· С переменным шагом . Напр. 1/n+1

· С нелинейным шагом . Напр.

Цель адаптации: изменение параметров эк модели, чтоб расчетное значение показателя наилучшим образом приближалось к некот оптим знач . Предмет адаптации: коэф-ты эконометрич мод. Ожидаемые рез-ты адаптации: корректировка коэф-ов мод, чтоб она вернулась в заданные границы изменения обусловленные действием случ факторов.

Алгоритм адаптации: пусть имеется ад модель . Выразим каждый параметр . Если теперь в полученное выражение подставить вместо расчетного значения показателя Y его фактическое значение, то будет получен такой параметр , который в точности описывает фактическое наблюдение на каждом t без какой-либо ошибки аппроксимации: ). Модификация алгоритма Роббинса-Монро будет иметь вид: .

Для линейной модели: .

· Нижняя граница: .

· Верхняя граница: . .

Адаптация модели не происходит в том случае, если

Если , то , и .

и .

.


Для многофакторной модели:

.


Для нелинейной модели:


3.Адаптивные методы среднесрочного прогнозирования: методы дисконтирования.

При среднесрочном прогнозировании необходимо адаптировать модель к намечающимся отклонениям от тенденции.

Желание совместить аппарат математической статистики с новым подходом к прогнозированию, открытым Брауном, привёл к тому, что к началу 70-х годов ХХ века появился метод дисконтирования оценок МНК, который позволяет при оценивании параметров моделей учесть текущую информацию в большей степени, чем прошлую и приспособить модель к более поздним данным и использовать при дисконтировании веса, заданные по методу Брауна.

Критерий МНК, как известно, имеет вид: .

В соответствии с ним, находятся такие оценки прогнозной модели, при которых минимизируется сумма квадратов отклонений фактических значений от расчётных. Но для прогнозиста в случае прогноза эволюционно протекающих процессов важнее более точно описать последние наблюдения, нежели те, которые убывают в прошлое. Поэтому и ошибка аппроксимации последних наблюдений должна минимизироваться в большей степени, чем ошибки аппроксимации в начале ряда. Логично, поэтому задать этим ошибкам аппроксимации некоторые веса vt так, чтобы их значения уменьшались с убыванием наблюдений в прошлое: vT> vT-1> …> vt>…> v1 и т.д. Веса могут задаваться в числовой форме или в виде функциональной зависимости, но так, чтобы по мере продвижения в прошлое веса убывали. Для удобства часто вводят дополнительное условие: . Но его выполнение, в отличие от ситуации метода Брауна, не является обязательным.

Возможно два варианта дисконтирования оценок МНК.

Первый вариант когда взвешивается каждая ошибка аппроксимации, и эта взвешенная величина подставляется в сумму квадратов МНК. Тогда критерий взвешенного МНК будет иметь вид: .

Применение этого критерия, например, для простой однофакторной линейной модели приведёт к необходимости решать такую систему уравнений:

Такой способ взвешивания данных о наблюдении при построении адаптированных моделей используют не очень часто, поскольку в полученной системе уравнений не ясен смысл взвешивания различных сумм, поскольку веса везде представлены квадратами. Значительно чаще используется другой метод взвешивания, а именно, взвешиваются не сами ошибки аппроксимации, а их квадраты.

Тогда критерий МНК, взвешенного таким способом, имеет вид: .

Использование этого критерия, например, для линейной однофакторной модели приведёт к необходимости решения системы двух таких уравнений: (1).

Левая часть 1го уравнения означает вычисление взвешенной средней переменной , а второе слагаемое этого же уравнения представляет собой произведение коэффициента на взвешенную среднюю переменной .

Веса задаются как и в модели Брауна:

Этот способ задания весов позволяет получить взвешенную среднюю: , которая в краткосрочном прогнозировании используется как лучшая прогнозная оценка данного показателя Y на шаг вперёд.

Этот же способ взвешивания применяется и для факторной переменной : . Поскольку для метода Брауна сумма весов равна единице получим: , где , и . Для успешного применения с помощью весов метода Брауна взвешенного МНК необходимо оптимизировать постоянную сглаживания α.

Суть взвешенного МНК:

Систему уравнений (1) можно получить с помощью общей схемы оценивания методом z-множителей, если задать z-множители так: . Решая систему (1) мы получаем такие оценки коэффициентов прогнозной модели которые применительно к рассматриваемому случаю будут иметь вид: . Смысл первого уравнения системы очевиден, поскольку веса заданы по методу Брауна и они убывают в прошлое – прогнозная модель будет описывать исходный ряд данных так, что ошибки аппроксимации, убывающие в прошлое, будут больше, чем ошибки аппроксимации последних наблюдений. При этом модель обязательно будет иметь как положительные, так и отрицательные ошибки аппроксимации, иначе сумма взвешенных ошибок аппроксимации не будет равна нулю. Модель, как следует из сказанного, хорошо описывает текущие наблюдения и плохо – прошлые. Смысл второго уравнения системы менее ясен. Будет равна нулю сумма взвешенных произведений фактических значений фактора на ошибки аппроксимации. Но метод z-множителей не только позволяет получить дополнительное толкование оценкам взешенного МНК, но и, используя общий принцип учёта текущих наблюдений в большей степени, чем более ранние, получить новые оценки. Например, можно задать такие z-множители:

. Тогда будет получена такая система уравнений: . Решая эту систему, прогнозист получит оценки адаптировной модели – ведь текущая информация используется в большей степени, чем прошлая, но эти оценки будут отличаться от оценок взвешенного МНК и, возможно, в некоторых случаях будут давать более точные прогнозы. Ряд различных способов дисконтирования данных, который открывает метод z-множителей, довольно широк. Это вооружает прогнозиста новым дополнительным инструментом построения адаптивных моделей среднесрочного прогнозирования.

Недостатком этого способа получения оценок прогнозной модели с помощью взвешенного МНК является показательный способ задания весов ошибок аппроксимации. Зачастую в экономике встречаются ситуации когда после некоторого периода использования новых технологий предприятие возвращается по различным причинам к старым технологиям. Тогда вес наблюдений в прошлом, когда использовались старые технологии, не будут менее важны для прогнозирования, чем текущие.

 






Поделиться с друзьями:


Дата добавления: 2016-11-18; Мы поможем в написании ваших работ!; просмотров: 831 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Если президенты не могут делать этого со своими женами, они делают это со своими странами © Иосиф Бродский
==> читать все изречения...

3878 - | 3703 -


© 2015-2026 lektsii.org - Контакты - Последнее добавление

Ген: 0.011 с.