Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Взаимное преобразование схем звезда-треугольник




Соединение, представленное на рисунке 2.109 а, называют трехлучевой звездой, а на рис. 2.109 б – треугольник сопротивлений.

Ставится задача осуществить преобразование звезды сопротивлений в эквивалентный треугольник и наоборот.

В общем случае звезда (треугольник) сопротивлений подключены к разветвленной схеме в узлах 1, 2, 3. Преобразования должны быть эквивалентными, т.е. в результате преобразований в остальной части схемы никаких изменений нет. Токи , , и потенциалы , , остаются неизменными.

 

 

Рисунок 2.109 – Трехлучевая звезда и треугольник сопротивлений

 

Для доказательства рассмотрим преобразования треугольника сопротивлений (рис. 2.109 б) в эквивалентную звезду схему треугольник (рис. 2.109 а). В этом случае исходными данными являются величины сопротивлений треугольника , , . Необходимо определить величины сопротивлений эквивалентной звезды – , , .

Из схемы треугольник (рис. 2.109 б), согласно второго закона Кирхгофа, имеем:

Используя первый закон Кирхгофа для 1 и 2 узлов, соответственно получим:

, .

Подставим полученные выражения, в уравнение, составленное по второму закона Кирхгофа. В результате имеем:

, откуда

.

Тогда напряжение между узлами 1 и 2:

.

Рассмотрим схему звезда (рис. 2.109 а). Для данной схемы

.

Сравнивая полученные выражения для U 12,

.

Так как схемы эквивалентные то напряжение одинаково и коэффициенты при токах и тоже должны быть одинаковыми. Следовательно:

, , .

 

Пример 2.27. Рассмотрим эффективность преобразование треугольника сопротивлений в звезду сопротивлений.

1. Исходная схема (рис. 2.110 а) содержит ветвей и узла.

2. Преобразовываем треугольник сопротивлений , , в эквивалентную звезду , , , сопротивления которой соответственно равны:

, , .

В результате преобразования получим эквивалентную схему, представленную на рисунке 2.110 б.

 

 

Рисунок 2.110 – Преобразование треугольника сопротивлений

в эквивалентную звезду

 

Таким образом, после преобразования произошло упрощение схемы: вместо шести ветвей в первой схеме получили три ветви во второй; вместо четырех узлов в первой схеме получили два узла во второй.

 

Пример 2.28. Рассмотрим пример взаимных преобразований треугольник–звезда на конкретном примере. В схеме, приведенной на рисунке 2.111, заданы напряжения источников ЭДС Е1 = 20 В, Е3 = 15 В и значения сопротивлений r 1 = 150 Ом, r 2 = 50 Ом, r 3 = 75 Ом, r 4 = 1000 Ом, r 5 = 800 Ом, r 6 = 200 Ом. Определить токи ветвей.

 

 

Рисунок 2.111 – Исходная электрическая цепь постоянного тока

 

1. Исходная схема (рис. 2.111) содержит ветвей и узла.

2. Преобразовываем треугольник сопротивлений , , в эквивалентную звезду , , , сопротивления которой соответственно равны:

Ом,

Ом,

Ом.

В результате преобразования получим эквивалентную схему, представленную на рисунке 2.112.

 

 

Рисунок 2.112 – Преобразование треугольника сопротивлений

в эквивалентную звезду

 

Таким образом, после преобразования произошло упрощение схемы: вместо шести ветвей в исходной схеме получили три ветви в преобразованной схеме; вместо четырех узлов в исходной схеме получили два узла в преобразованной схеме.

3. Рассчитываем токи в электрической схеме, приведенной на рисунке 2.112, методом узловых потенциалов.

3.1. Осуществляем предварительный анализ схемы.

Количество ветвей – , количество узлов – .

3.2. Рассчитываем токи в ветвях методом узловых потенциалов.

Потенциал четвертого узла принимаем равным нулю: . Следовательно, необходимо определить потенциал пятого узла .

3.2.1. Составляем уравнение для определения потенциала :

.

5.2.1.1. Подставляем числовые значения и находим потенциал .

5.2.1.2. Сумма проводимостей ветвей, подключенных к соответствующим узлам:

См;

Узловые токи

мА.

5.2.1.3. После подстановки цифровых значений, определяем потенциал : В.

5.2.2. Определяем токи в ветвях электрической цепи, приведенной на рисунке 2.112.

мА,

мА,

мА.

3.2.5. Используя второй закон Кирхгофа, определяем токи и в электрической цепи, приведенной на рисунке 2.111:

мА;

мА.

3.2.6. Используя первый закон Кирхгофа, определяем ток в электрической цепи, приведенной на рисунке 2.111:

мА.

4. Проверяем решение, составив баланс мощностей.

4.1. Мощность, генерируемая источниками питания:

Вт,

Вт.

Суммарная мощность источников:

Вт.

4.2. Мощность, потребляемая приемниками:

Вт,

Вт,

Вт,

Вт,

Вт,

Вт.

Суммарная мощность, потребляемая приемниками:

Вт.

4.3. Из сравнения генерируемой мощности источником и потребляемой мощности приемниками, следует, что погрешность вычислении и не превышает 0,5%.

 

Возможно и обратное преобразование – звезды сопротивлений в эквивалентный треугольник (рис. 2.113).

 

 

Рисунок 2.113 – Треугольник сопротивлений и трехлучевая звезда

 

В этом случае исходными данными являются сопротивления , , . Необходимо определить сопротивления , , .

Рассмотрим схему звезда (рис. 2.113 б). Ток равен:

.

Из метода узловых потенциалов .

Тогда ток

.

Из схемы треугольник (рис. 2.113 а), имеем: .

Ток , .

Тогда ток

.

Сравнивая ток при соединении звездой и треугольником, и учитывая эквивалентность преобразований, имеем:

, .

Аналогично .

Если в вышеуказанные формулы вместо проводимостей , , , подставить величины сопротивлений , , , , тогда

.

В общем виде формулы преобразования имеют вид:

; ; .

 

Пример 2.29. Рассмотрим пример взаимных преобразований звезда–треугольник на конкретном примере. В схеме, приведенной на рисунке 2.114 а, заданы ЭДС Е = 20 В и значения сопротивлений r 1 = 4 Ом, r 2 = 1 Ом, r 3 = 1 Ом, r 4 = 2 Ом, r 5 = 4 Ом, r 6 = 5 Ом. Определить токи ветвей.

 

 

Рисунок 2.114 – Электрическая схема

1. Расчет токов целесообразно осуществлять, преобразуя предварительно звезду в треугольник по схеме, приведенной на рисунке 2.114 б. В соответствии с формулами преобразования звезды сопротивлений в треугольник

Ом,

Ом,

Ом.

2. Токи в ветви определяем по закону Ома:

А.

3. Ветви , также как и ветви , соединены параллельно:

Ом,

Ом.

4. Ветви и соединены последовательно:

Ом.

5. Общий ток: А.

6. Определяем напряжение и :

В,

В.

7. Токи и в схеме цепи, приведенной на рисунке 2.114 а, определяем по закону Ома:

А, А.

8. Ток в схеме цепи, приведенной на рисунке 2.114 а, определяем из уравнения, составленного по первому закону Кирхгофа для узла 2:

А.

9. Ток в схеме цепи, приведенной на рисунке 2.114 а, определяем из уравнения, составленного по второму закону Кирхгофа для контура 1421:

А.

10. Ток в схеме цепи, приведенной на рисунке 2.114 а, определяем из уравнения, составленного по первому закону Кирхгофа для узла 4:

А.

11. Ток в ветви с источником ЭДС в схеме цепи, приведенной на рисунке 2.114 а, определяем из уравнения, составленного по первому закону Кирхгофа для узла 1:

А.

12. Проверяем решение системы уравнений, составив баланс мощностей.

12.1. Мощность, генерируемая источником напряжения:

Вт.

12.2.Мощность приемников:

Вт,

Вт,

Вт,

Вт,

Вт,

Вт,

Суммарная мощность приемников:

Вт.

12.3. Из сравнения генерируемой мощности источниками и потребляемой мощности приемниками, следует, что погрешность вычислений и не превышает 0,5%.

 





Поделиться с друзьями:


Дата добавления: 2016-11-18; Мы поможем в написании ваших работ!; просмотров: 1388 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Если вы думаете, что на что-то способны, вы правы; если думаете, что у вас ничего не получится - вы тоже правы. © Генри Форд
==> читать все изречения...

2261 - | 2183 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.013 с.