Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Давление в жидкости и газе. Выталкивающая сила.




В отличие от твёрдых тел в жидкости возможны значительные смещения составляющих её частиц относительно друг друга. Поэтому для жидкости, как и для твёрдых тел, характерно наличие вполне определённого объёма, чего нельзя сказать о газе. Вместе с тем жидкость, подобно газу, принимает форму сосуда, в который её помещают. Как показывают рентгенографические исследования, в отношении характера расположения частиц жидкости также занимают промежуточное положение между твёрдыми телами и газами. В расположении частиц жидкости наблюдается ближний порядок. Это означает, по отношению к любой частице расположение ближайших к ней соседей является упорядоченным. Однако по мере удаления от данной частицы расположение по отношению к ней других частиц становится всё менее упорядоченным и чем дальше от частицы – порядок в расположении частиц полностью исчезает. В кристаллах имеет место дальний порядок – упорядоченное расположение частиц по отношению к любой частице наблюдается в пределах значительного объёма. Наличие в жидкости ближнего порядка послужило причиной того, что структуру жидкостей называют квазикристаллической – кристаллоподобной.

Рис.4.1. 4.1.
В силу близкого расположения молекул жидкости друг к другу силы притяжения между ними имеют значительную величину. На каждую молекулу действуют силы притяжения со стороны окружающих молекул, удалённых от неё на расстояние ~ 1,5×10–7 см, т. е. находящихся центрами внутри сферы радиусом R = 1,5×10–7 см, называемой сферой молекулярного действия (рис. 4.1.); центр этой сферы совпадает с данной молекулой. Если радиус самих молекул r ~ 5×10–8 см, то сфера молекулярного действия R не превышает полутора диаметров молекулы (~ 3× r). Следовательно, каждая молекула жидкости взаимодействует только с непосредственно прилегающими к ней соседними молекулами. Равнодействующая всех этих сил для молекулы, находящейся от поверхности жидкости на расстоянии R в среднем равна нулю (рис. 4.2., см. а, б). Иначе обстоит дело, если молекула находится на расстоянии от поверхности меньшем, чем R. Так как плотность газа (пара), с которым граничит жидкость, во много раз меньше плотности жидкости, выступающая за пределы жидкости часть сферы молекулярного действия будет менее заполнена молекулами. Естественно, результирующая сила, действующая на молекулу, не равна нулю и направлена внутрь жидкости перпендикулярно её поверхности (рис. 4.2., см. в, г). Величина этой силы растёт в направлении от внутренней к наружной границе слоя жидкости. В таком положении находятся все молекулы, лежащие в поверхностном слое жидкости толщиной, ~ равной радиусу сферы молекулярного действия R = 1,5×10–7 см. Таким образом, поверхностный мономолекулярный слой жидкости оказывает на всю жидкость давление; его принято называть внутренним или молекулярным. Аналитически его можно записать p = DF/DS, где DF – сила молекулярного взаимодействия на площади сплошной среды DS.

Рис.4.2. 4.2.
Поскольку внутреннее давление направлено перпендикулярно поверхности жидкости, то масса жидкости, не подверженная действию внешних сил, должна принять форму шара; в этом случае поверхность при данном объёме соответствует минимуму, а силы внутреннего давления взаимно уравновесятся. Такое явление удобно наблюдать на маленьких массах жидкости (например, мелкие дождевые капли); действие силы тяжести здесь пренебрежимо мало по сравнению с действием сил внутреннего давления. Таким образом, под влиянием молекулярных сил поверхность жидкости сокращается до минимально возможных размеров, а поверхностный слой жидкости становится подобен эластичной растянутой плёнке. Такое состояние поверхностного слоя жидкости называется поверхностным натяжением.

Характерной особенностью жидкостей и газов является то, что они не оказывают сопротивления сдвигу и поэтому легко изменяют свою форму. Однако для изменения объёма жидкости или газа требуются конечные внешние силы. При изменениях объёма, происходящих в результате внешних воздействий, в жидкостях или газах возникают упругие силы, уравновешивающие действие внешних сил. Упругие свойства жидкостей и газов проявляются в том, что отдельные части их действуют друг на друга (и на соприкасающиеся с ними тела) с силой, зависящей от степени сжатия жидкости или газа. Это воздействие характеризуется величиной, называемой давлением. Учитывая результаты параграфа 3.4., можно сказать, сила давления действует на каждый макроскопический элемент (D N << N) жидкости или газа и на жидкость или газ в целом, но не имеет смысла для отдельной частицы среды.

Рис. 4.3.
Рассмотрим жидкость, находящуюся в равновесии; отдельные части её, макроскопические элементы, не перемещаются друг относительно друга. Выделим площадку DS макроскопического элемента внутри жидкости (рис. 4.3.). Соприкасающиеся по этой площадке макроскопические элементы жидкости действуют друг на друга с равными по величине противоположно направленными силами; система находится в равновесии. Для выяснения характера этих сил, мысленно уберём жидкость с одной стороны площадки – из одного макроскопического элемента (штрихи отсутствуют, рис. 4.3.). Состояние равновесия между макроскопическими элементами будет нарушено. Чтобы его восстановить, действие этого элемента заменим силами такой же величины и направления, стрелки (рис. 4.3.). Эти силы должны быть направлены по нормали к поверхности площадки DS, в противном случае их тангенциальная составляющая привела бы макроскопические элементы жидкости в движение, равновесие было бы нарушено. Следовательно, и равнодействующая D f всех сил, с которыми жидкость действует на площадку DS, также направлена по нормали к этой площадке. Отношение силы D f к площадке DS называется давлением в жидкости: . Давление является скалярной величиной, поскольку его значение не зависит от ориентации площадки DS. Математика не противоречит такому утверждению. Действительно, давление, по существу, равно отношению двух коллинеарных векторов , а такая величина представляет собой скаляр (проверьте); здесь имеется в виду, площадка DS может рассматриваться как вектор, имеющий направление нормали к DS.

Давление в газе определяется аналогичным образом.

Если бы в жидкости (или газе) не было объёмных сил, то условием равновесия было бы постоянство давления во всём объёме. Рассмотрим распределение давления в жидкости при наличии объёмных сил. Для этого выделим цилиндрический объём жидкости таким образом, чтобы его ось была вертикальной (рис. 4.4.). В этом случае вдоль оси цилиндра, кроме сил давления на основания, будет действовать также объёмная сила тяжести m × g = r × g × h × DS (r – плотность жидкости, h – высота цилиндра, столба жидкости) и условие равновесия имеет вид:

.

Сокращая на DS, имеем

,

давления на двух разных уровнях отличаются на величину, численно равную весу вертикального столба жидкости, заключённого между этими уровнями. По этой формуле рассчитывается давление внутри покоящейся жидкости на глубине h от открытой горизонтальной поверхности.

Рис. 4.4.
Следствием неодинаковости давлений на разных уровнях является наличие выталкивающей силы – силы Архимеда, действующей на тела, находящиеся в жидкости или газе. Поскольку в жидкостях и газах давление во всех направлениях одинаково, то на нижнее основание тела, погружённого в жидкость или газ, действует большая сила, чем на верхнее основание. Величина выталкивающей силы запишется:

.

После преобразований читатель может получить хорошо известное выражение для силы Архимеда: , которое может быть прочитано так – равнодействующая всех сил давления, приложенных к поверхности тел, погружённых в жидкость или газ, направлена вертикально вверх и равна весу жидкости или газа в объёме данного тела. Если средняя плотность тела меньше, чем плотность жидкости, то в состоянии равновесия тело будет погружено в жидкость только частично. При этом сила тяжести, приложенная к центру тяжести тела, и выталкивающая сила, приложенная к центру тяжести погруженной в жидкость части объёма тела, должны быть равны по величине, и действовать вдоль одной и той же прямой; иначе создадут вращающий момент.

 





Поделиться с друзьями:


Дата добавления: 2016-11-18; Мы поможем в написании ваших работ!; просмотров: 761 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Велико ли, мало ли дело, его надо делать. © Неизвестно
==> читать все изречения...

2489 - | 2155 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.008 с.