Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Уравнение колебания. Скорость. Ускорение.




Квазиупругая сила

В предыдущем параграфе было установлено, несмотря на большое разнообразие колебательных процессов, как по физической природе, так и по степени сложности, все они совершаются по общим закономерностям и могут быть сведены к простейшим, гармоническим колебаниям, совершаемым по закону х (t) = . Настала пора уточнить физическое содержание уравнения. Для наглядности представим колебания математического и пружинного маятников на рис. 3.2.. Из рисунка следует, в уравнении колебания х (t) х – смещение колеблющегося тела из положения равновесия в заданный момент времени t, х о – максимально возможное отклонение из положения равновесия, амплитуда колебания. Графически уравнение колебания представлено на рис. 3.3. сплошной линией. Здесь jо = 0 – начальная фаза, определяющая положение тела, совершающего колебательный процесс, в момент времени t = 0. – фаза колебания, однозначно определяющая положение тела в заданный момент времени, а – текущая фаза колебания; – циклическая частота, определяющая число колебаний за 2p секунд, а T – период колебаний, время одного полного колебания. Наряду с периодом в технике используется величина обратная периоду и называемая частотой колебаний; её обозначают греческой буквой ню, n = 1/Т – сколько раз в единицу времени повторяется одно и то же состояние колеблющегося тела; – тригонометрическая функция, определяющая закон движения тела.

Следует ожидать, скорость тела, как и смещение, должна изменяться по гармоническому закону. Взяв производную от смещения х по времени, находим ; здесь учтено, начальная фаза jо = 0. Произведение амплитуды колебания х о на циклическую частоту w называют амплитудой скорости или максимальным значением скорости. Тогда аналитическое выражение скорости принимает вид ; график скорости представлен на рис. 3.3. крупным пунктиром и сдвинут по отношению к графику перемещения на p/2; из него следует, максимальное значение скорости соответствует минимальному значению перемещения и наоборот. Убедились в этом по графику?

Уравнение скорости функционально зависит от времени, следовательно, колебательное движение совершается с ускорением. Ускорение можно найти, продифференцировав уравнение скорости по времени:

Графически уравнение ускорения представлено на рис. 3.3. мелким пунктиром. Если учесть, , а формулу ускорения можно выразить через смещение х, то есть .

Сравнение формул смещения, скорости и ускорения приводит к следующим выводам: изменение этих физических величин совершается по закону синуса или косинуса с одинаковой циклической частотой или периодом ; амплитуды этих колебаний различны и равны соответственно, – у смещения, – у скорости и – у ускорения. Фазы колебаний также различны – изменение скорости опережает изменение смещения по фазе на , что соответствует времени Т/4; изменение ускорения опережает изменение смещения в колебательном процессе на , что соответствует времени Т/2; здесь Т – период колебания. В этом можно убедиться, глядя на рис. 3.3..

В заключение следует обратить внимание на то, что по второму закону динамики сила, действующая на тело, совершающее колебательный процесс, запишется: F = ma = – m × . Отсюда может сложиться впечатление, что эта сила подобна упругой силе, поскольку она пропорциональна смещению х и имеет противоположный знак. Поэтому такого рода силы принято называть квазиупругими (как будто упругие). Почему? (см. с. 14, может оказать помощь).





Поделиться с друзьями:


Дата добавления: 2016-11-18; Мы поможем в написании ваших работ!; просмотров: 928 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Либо вы управляете вашим днем, либо день управляет вами. © Джим Рон
==> читать все изречения...

2255 - | 1995 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.007 с.