Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Лекция 3. Теория сложного напряженно-деформированного состояния (НДС) твердого тела




 

Напряжённое и деформированное состояние частицы тела

Теория НДС ставит своей задачей определение внутренних напряжений, деформаций и перемещений в различных точках деформируемого твёрдого тела произвольной формы и размеров.

Напряженным состоянием тела в точке называют совокупность нормальных и касательных напряжений, действующих по всем площадкам (сечениям), содержащим данную точку.

Отнесём тело к координатным осям x, y, z и выделим мысленно из него материальную частицу в виде параллелепипеда или кубика размерами dx, dy, dz (рис. 3.1)

а) б)

Рис. 3.1

Действия отброшенной части тела заменим векторами – напряжениями и разложим их на составляющие по координатным осям.

(1)

где ex, ey, ez - единичные векторы, направленные вдоль координатных осей x, y, z; , , - нормальные напряжения, , , , , - касательные напряжения. У касательных напряжений первый индекс указывает на направление его действия, второй индекс – на нормаль к площадке, на которой оно действует. У нормальных напряжений индекс соответствует одновременно как направлению, так и нормали к площадке их действия. На невидимых на рис. 3.1 гранях частицы действуют такие же, но противоположно направленные напряжения.

Совокупность указанных напряжений полностью характеризует напряжённое состояние частицы тела. Эту совокупность записывают в виде квадратной матрицы

(2)

и называют тензором напряжений Коши. Система напряжений, приложенных к частице тела, должна удовлетворять условиям равновесия. Первые три условия в проекциях на оси x, y, z дают тождества, т.к. на противоположных гранях мы считаем напряжения равными по величине. Остаётся проверить, обращаются ли в нуль суммы моментов всех сил относительно координатных осей. Составим условие равновесия моментов относительно оси х:

откуда следует Аналогично можно составить два уравнения равновесия моментов относительно осей y и z. В результате получим соотношения:

(3)

которые называют законом парности касательных напряжений: на двух взаимно перепендикулярных площадках составляющие касательных напряжений, ортогональные их общему ребру, равны по величине и направлены оба либо к ребру, либо от него. На основании этого закона тензор-матрица напряжений является симметричной относительно главной диагонали, состоящей из нормальных напряжений.

Напряжение

(4)

называют средним напряжением. Тензор напряжений, для которого , называется тензором–девиатором напряжений. В общем случае тензор напряжений можно разложить на сумму двух тензоров:

Первый из них

(5)

носит название шарового тензора напряжений, а второй:

(6)





Поделиться с друзьями:


Дата добавления: 2016-11-18; Мы поможем в написании ваших работ!; просмотров: 1133 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Своим успехом я обязана тому, что никогда не оправдывалась и не принимала оправданий от других. © Флоренс Найтингейл
==> читать все изречения...

2378 - | 2186 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.012 с.