Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Расчеты статически определимых стержней




Статически определимый стержень – это стержень, который можно рассчитать, используя только уравнения равновесия (уравнения статики).

В любой науке, которая называется «точной» и в которой используются аналитические методы описания состояний и явлений, не обойтись без моделей. В нашем случае при решении различных задач мы каждый раз будем выбирать для рассматриваемого объекта расчетную схему.

Расчетная схема – это упрощенная схема конструкции или ее элементов, освобожденная от несущественных в данной задаче особенностей. При этом расчетная схема должна отражать все наиболее существенное для характера работы данной конструкции и не содержать второстепенных факторов, мало влияющих на результаты ее расчета. Построение и обоснование расчетной схемы – ответственный этап проектирования и расчета конструкции.

Перейдем к рассмотрению конкретных примеров.

 

Пример 5.

Чугунная труба-стойка высотой с наружным диаметром и внутренним диаметром нагружена сжимающей силой , модуль упругости чугуна . Найти напряжение в поперечном сечении колонны, абсолютное и относительное укорочения .

Решение.

Как уже говорилось выше, решение задачи начинается с выбора расчетной схемы. В данном случае стойка изображается как вертикальный стержень длиной , жестко закрепленный в нижней части (условное изображение фундамента или земли). К верхней части стержня приложена сосредоточенная сжимающая сила (направление к стержню). При этом линия действия силы должна совпадать с осью стержня. Кроме того, рядом необходимо изобразить поперечное сечение стойки с указанием основных размеров. В данном примере – это кольцо. Расчетная схема для решения задачи изображена на рис. 2.13, а.

Далее строим эпюру продольной силы и определяем максимальное внутреннее усилие, возникающее в колонне. Поскольку внешняя нагрузка постоянна по высоте, то возникает только одна сжимающая продольная сила .

Рис. 2.13.

 

Максимальное нормальное напряжение определяется по формуле:

где – площадь трубы:

.

тогда:

Абсолютное и относительное укорочения стойки определяем по формулам:

Знак "минус" обозначает уменьшение размера (укорочение).

Пример 6.

Стальной стержень круглого сечения растягивается усилием . Относительное удлинение не должно превышать , а напряжение – . Найти наименьший диаметр, удовлетворяющий этим условиям, если модуль упругости стали .

Решение.

Как и ранее, решение задачи начинается с изображения расчетной схемы и построения эпюра продольных сил (рис. 2.14).

Рис.2.14

 

По условию задачи напряжение не должно превышать , в связи с чем данная величина может быть принята за расчетное сопротивление материала стойки на растяжение, то есть . По аналогии заданное относительное удлинение можно принять за предельно допустимое для данной стойки, то есть . В результате необходимо подобрать диаметр стойки, удовлетворяющий условию прочности и условию жесткости.

Продольное растягивающее усилие равно по величине внешней нагрузке, действующей на стержень

Требуемая площадь поперечного сечения колонны из условия прочности будет определяться выражением:

Зная требуемую площадь, выразим необходимый из условия прочности диаметр:

Условие жесткости при центральном растяжении-сжатии:

Выражаем из предельного неравенства требуемую из условия жесткости площадь поперечного сечения:

Диаметр стойки из условия жесткости определим по формуле:

Окончательно принимаем из двух диаметров больший,

 

Пример 7.

Определить грузоподъемность и удлинение балки, если .

Расчетная схема бруса и эпюра продольных сил изображены на рис. 2.15.

Рис.2.15

Решение.

Грузоподъемность бруса – это максимальная нагрузка, которую он может выдержать, не разрушаясь. Таким образом, необходимо определить требуемую нагрузку из условия прочности:

Согласно эпюре , тогда условие прочности примет вид:

Отсюда грузоподъемность бруса будет равна:

Для определения удлинения стержня разбиваем его на участки. Каждый участок, должен иметь постоянную жесткость и величину продольной силы. Таким образом, для данного бруса получаем три участка (на рис. 2.15 они обозначены римскими цифрами), тогда абсолютная деформация в общем виде будет определяться выражением:

,

в котором каждое слагаемое определяется отдельно:

где - значения продольных сил соответственно на первом, втором и третьем участках; - длины соответственно первого, второго и третьего участков; - значения модулей упругости материалов бруса для каждого участка; - площади поперечных сечений стержня на первом, втором и третьем участках.

Поскольку жесткости всех трех участков одинаковые (балка изготовлена из одного материала и имеет постоянное по всей длине поперечное сечение), можно обозначить и вынести этот множитель за скобки. В результате получим выражение в виде:

где , , , , .

 

Пример 8.

Проверить прочность чугунного бруса (рис.2.16, а). Принять =150 МПа; =650 МПа, допускаемый коэффициент запаса прочности = 4.

Решение.

Строим эпюры продольных сил и нормальных напряжений (рис.2.16, б и в).

Рис.2.16

 

Напряжения на участках бруса

Так как материал бруса имеет различную прочность при растяжении и сжатии, проверку прочности следует выполнять для сжатого и растянутого участков, несмотря на то, что на участке напряжение значительно больше по абсолютному значению.

Коэффициенты запаса прочности

- прочность обеспечена;

- прочность обеспечена.

Из решения задачи можно сделать следующие выводы:

1) прочность стержня не обеспечена, так как на одном его участке коэффициент запаса прочности меньше требуемого;

2) на участках и коэффициент запаса прочности завышен, следовательно, эти участки бруса можно сделать меньшего диаметра. При проектировании элементов конструкций следует стремиться к тому, чтобы во всех сечениях коэффициент запаса прочности был равен или близок к требуемому.

Проверку прочности бруса можно было выполнить, используя условие прочности в виде , определив предварительно допускаемые напряжения по формулам

; .

 





Поделиться с друзьями:


Дата добавления: 2016-11-18; Мы поможем в написании ваших работ!; просмотров: 870 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Студенческая общага - это место, где меня научили готовить 20 блюд из макарон и 40 из доширака. А майонез - это вообще десерт. © Неизвестно
==> читать все изречения...

2346 - | 2305 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.009 с.