Наиболее подробно в почвенной микробиологии изучались клубеньковые бактерии. 20% всех работ посвящено клубеньковым бактериям в основном из-за их большого практического значения в азотном питании растений и в связи с приготовлением бактериального препарата — нитрагина (ризоторфина) для инокуляции бобовых сельскохозяйственных культур. Повышение урожая от применения нитрагина изменяется от 20 до 200%. Подробнее о клубеньковых бактериях см. в разделе о круговороте азота. Здесь отметим некоторые важные моменты. Клубеньковые бактерии могут жить в почве, ризосфере и ризоплане. Обычно в почве в большом количестве они сохраняются 3-4 года после посева соответствующего бобового растения, а затем их титр резко падает, хотя в виде минорных компонентов комплекса почвенных микроорганизмов они могут сохраняться десятки лет. К сожалению, нет достаточно хорошей элективной среды для учета количества клубеньковых бактерий в почве. В бобовые растения клубеньковые бактерии проникают через корневые волоски и формируют клубеньки. Наличие небольшого количества крупных розовых от леггемоглобина клубеньков свидетельствует об установлении эффективного симбиоза между растением и бактериями и о том, что азотфиксация будет проходить успешно. Образование мощных клубеньков предотвращает дальнейшее их формирование. Если клубеньков очень много, они мелкие и не имеют розовой окраски, что свидетельствует о переходе бактерий к паразитическому существованию.
Заражение растения происходит при соприкосновении клубеньковых бактерий с корневыми волосками в период прорастания семян. Это взаимодействие генетически запрограммировано и определяется специфическими метаболитами, которые образуют как бактерии, так и растения. Там же представлены последовательные этапы образования клубенька и его строение. Около корневого волоска формируется микроколония из клеток клубеньковых бактерий. Корневой волосок приобретает форму ручки зонтика. Затем происходит впячивание растительной клеточной стенки и формирование инфекционной нити, содержащей клетки бактерий и уходящей в глубь корня. Инфекционная нить формируется со скоростью 100-200 мкм за сутки.
При соприкосновении с тетраплоидными клетками коры нить стимулирует деление, как самой этой клетки, так и соседних диплоидных клеток. Инфекционная нить разветвляется, и бактерии распределяются по тетраплоидным клеткам. В результате разрастания тканей, вызванного ктубеньковыми бактериями при участии ростовых веществ, происходит образование клубеньков. Бактерии в клубеньках размножаются очень быстро и образуют крупные клетки неправильной формы (бактероиды), объем которых может в 10 раз превышать объем свободноживущих клеток. Бактероиды располагаются по отдельности или группами. Леггемоглобин обеспечивает диффузию кислорода через клетку растения к бактероиду. Благодаря особым свойствам леггемоглобина бактероиды снабжаются кислородом в количестве достаточном для их роста и для получения энергии, но в то же время не создается слишком высокое парциальное давление кислорода, неблагоприятное для фиксации азота бактероидами. В сформировавшемся клубеньке бактероиды не растут, и вся энергия идет на азотфиксацию. Поэтому клубеньки фиксируют азот очень эффективно по сравнению со свободноживущими бактериями, у которых азотфиксация сопровождается активным ростом клеток.
На одном растении клубеньки одновременно могут образовываться разными видами или штаммами клубеньковых бактерий.
Поэтому вносимый штамм должен обладать конкурентоспособностью, т.е. именно он должен образовывать клубеньки в противоположность местным менее активным штаммам.
К симбиотическим азотфиксирующим микроорганизмам относится и актинориза, которая может фиксировать десятки и даже сотни килограммов N на 1 га. В этом случае коралловидные клубеньки образуют актиномицеты рола Franckia. Клубеньки образуются на растениях из разных семейств. Они распространены по всему земному шару и первыми появляются в местах, где идет почвообразование и породы бедны азотом. Актиноризой обладают ольха, лох, куропаточья трава, казуарина, облепиха и др Поскольку эти растения не имеют особого хозяйственного значения, актинориза исследовалась мало.
Третий вид азотфиксирующего симбиоза — это взаимодействие цианобактерий с водным папоротником Azolla, растущим на поверхности воды рисовых полей и других тропических водоемов. Цианобактерия Anabaena azollae содержится в полостях листьев этого растения. Она имеет очень много гетероцист, в которых осуществляется активная азотфиксация (150-300 кг N на 1 га за год), что полностью обеспечивает растения риса азотом.
Четвертый вид симбиотической азотфиксации осуществляется в лишайниках, включающих цианобактерии.
Грибы — микоризообразователи вступают в симбиоз с высшими растениями и образуют микоризу (грибокорень). В экологии этот тип взаимоотношений (взаимовыгодный) называют термином мутуализм. В результате корень претерпевает большие морфологические и биохимические изменения. Образование микориз у растений является правилом, их отсутствие — редким исключением, т.е. корни почти всегда покрыты гифами гриба, гифы уходят далеко в почву и таким образом резко увеличивают поверхность соприкосновения корня и почвенных частиц. Почти все питательные вещества и вода сначала попадают в гифы и только потом в корень. В искусственных условиях без микоризы растения растут очень плохо, а некоторые (орхидеи) вообще не могут развиваться, так как они получают от гриба витамины. Различают много вариантов микориз. Рассмотрим только два наиболее отличающихся. Это эндотрофная везикулярно-арбускулярная (ВАМ) или просто арбускулярная микориза, характерная для большинства сельскохозяйственных культур, в том числе злаков и бобовых и эктотрофную, характерную для многих деревьев. Эндотрофную микоризу образуют представители зигомицетов, чаще всего виды родов Endogone, Pythium.
При эктотрофной микоризе гриб оплетает корень, оставаясь на его поверхности и образуя чехол из гиф. От этого переплетения мицелия в почву простираются многочисленные гифы, а корневые волоски не образуются (рис. 144). Гифы гриба проходят между клетками корневого эпидермиса и формируют так называемую «сеть Гартига». Образуют эту микоризу главным образом шляпочные грибы — гименомицетовые из класса сыроежки, мухоморы и др. (роды Boletus, Russula, Amanita). Опята не являются микоризными грибами: они разрушают мертвую древесину.
Везикулярно-арбускулярная микориза (ВАМ) характеризуется тем, что гифы проникают в глубь корня, образуют характерные гребенкоподобные структуры (арбускулы), формируют также шаровидные структуры (везикулы). Гифы идут во все стороны от корня, на их концах возникают покоящиеся споры.
Способ культивирования микоризных грибов, особенно ВАМ, в лаборатории в чистой культуре до сих пор не разработан, что очень затрудняет исследования, селекцию и получение мутантов. Разработка такого способа является первоочередной задачей микологов, так как можно было бы создавать более активные штаммы.
Растения без ВАМ в лабораторных опытах потребляют в 10 раз меньше фосфора, в несколько раз меньше азота, калия, железа и других элементов, хуже обеспечиваются водой. Казалось бы, искусственная микоризация должна давать сильный положительный результат. Однако этого не происходит, так как в почве почти всегда присутствуют споры микоризных грибов. Они крупные (200 мкм), имеют характерную морфологию и довольно легко выделяются, возможен и подсчет их численности, но не культивирование. Искусственная микоризация дает ощутимые результаты на почвах, подвергшихся обработке фунгицидами (для уничтожения фитопатогенных грибов) или на рекультивируемых территориях.