По распространению в биосфере водород занимает третье место после углерода и кислорода (отлат. hydrogene — рождающий воду). Он входит в состав самого распространенного в биосфере вещества — воды. Водород содержится во всех органических соединениях, в природных газах, залежах нефти, торфа и угля. В почве водород входит в состав гумуса. В атмосфере его очень мало, хотя из микрогазов атмосферы по значению и масштабам круговорота водород занимает первое место.
В обычных условиях водород вступает в реакции лишь с немногими элементами, но при нагревании дает радикал Н+ и взаимодействует со многими элементами. Соединяясь с кислородом, он образует воду и при этом выделяется очень много энергии, в связи с чем реакция получила название «гремучего газа», так как она протекает со взрывом:
Н2 + 1/2 02 = Н20 + 68,3 ккал/моль.
Реакция с азотом проходит с большими затратами энергии. Она возможна при высокой температуре, давлении и в присутствии катализаторов:
ЗН2 + N2 = 2NH3.
Этот процесс лежит в основе получения азотных удобрений по методу Габера-Боша.
Образование метана идет без катализаторов при высокой температуре:
2Н2+ С = СН4.
В биохимических процессах трансгидрирования водород участвует в реакции переноса электронов и протонов.
Круговорот молекулярного водорода в биосфере включает его образование и окисление в результате биогенных и абиогенных — геохимических и промышленных процессов.
Главный источник биогенного водорода — деятельность микроорганизмов в почве. Водород образуется также в рубце жвачных и пищеварительном тракте других животных, включая человека. Учесть количество водорода, выделяемого почвенными микроорганизмами, довольно сложно из-за того, что его образование в природных ассоциациях сопряжено с параллельно идущими процессами потребления.
3 Микробиологические процессы образования водорода Один из первых описанных природных процессов микробного образования водорода — сбраживание целлюлозы в анаэробных условиях смешанными культурами бактерий. Первичные анаэробы, осуществляющие брожение, выступают в роли главных генераторов водорода в анаэробной зоне. К облигатным вторичным анаэробам, образующим водород, относятся сульфатредуцирующие бактерии, к факультативным — энтеробактерии. В анаэробных условиях водород образуют некоторые простейшие — симбионты животных, обитающие в их кишечном тракте. В аэробной зоне водород продуцируют азотфиксаторы, метанотрофы и фототрофные организмы — водоросли, цианобактерии, фотосинтезирующие пурпурные и зеленые бактерии.
Механизмы образования водорода у многочисленных групп микроорганизмов, участвующих в этом процессе, различны. У большинства хемотрофных бактерий образование водорода сопряжено с процессами получения энергии. Конечным акцептором электронов выступают протоны Н, что определяется наличием специфического фермента — гидрогеназы, катализирующего реакцию 2Н+ + 2е -» Н2; переносчик электронов, с которым взаимодействует гидрогеназа — железосодержащий фермент ферредоксин. У азотфиксаторов в образовании водорода принимает участие Fe-Мо-содержащий фермент нитрогеназа, который катализирует восстановление не только азота, но и протонов Н. Этот процесс идет с затратой АТФ. Нитрогеназа катализирует образование водорода и у фототрофных азотфиксаторов. У водорослей и цианобактерий выделение водорода связано с фотолизом воды.
Таким образом, условия, способствующие активному образованию водорода в почве, сводятся к наличию в анаэробной зоне сбраживаемых органических субстратов, а в аэробной зоне — к активации фотосинтеза.
4 Потребление водорода Считают, что потребление молекулярного водорода в почвах на Земле составляет 108 т в год. Образующийся в почве водород активно поглощается «бактериальным фильтром», поэтому в природной обстановке его трудно обнаружить, хотя в чистых культурах выделение водорода легко регистрируется. Потребление водорода микроорганизмами происходит наиболее активно в аэробной зоне, хотя частично он потребляется и вторичными анаэробами. Водород используют разными путями и с участием разных акцепторов электрона микроорганизмы многих таксономических, трофических и физиологических групп.
Водородными называют большую и разнородную в таксономическом отношении группу бактерий, которые в аэробных условиях окисляют водород и способны к автотрофному росту. Почти все они факультативные автотрофы. Многие ассимилируют N3, а в анаэробных условиях способны к окислению водорода кислородом нитратов или нитритов, восстанавливая их до N2.
К водородным бактериям, которые могут использовать водород и строить свое тело из С02, относят десятки обычных родов бактерий, которые могут развиваться и за счет органических веществ. Это грамотрицательные Hydrogenobacter, Hydrogenophaga, Azospirillum, Alcaligenes, Aquaspirillum, Rhizobium, почкующиеся Blastobacter, Hyphomicrobium, а также грамположительные кори- неподобные бактерии родов Arthrobacter, Nocardia, Mycobacterium, Streptomyces и некоторые виды споровых рода Bacillus. Таким образом, хемолитоавтотрофия на основе окисления водорода — более распространенное среди бактерий явление, чем при окислении других неорганических субстратов. Они осуществляют реакцию Н2 + 0,5 02 = Н20. У них имеется цикл Кальвина или они ведут превращения как метаногены.
В клубеньках бобовых растений при активности бактероидов наблюдается процесс рециклизации водорода. Образуемый нит- рогеназой Н2 частично окисляется кислородом и синтезирует АТФ. В то же время водород выступает как донор электронов для нит- рогеназы и обеспечивает ассимиляцию С02. При этом потери водорода составляют всего 4 вместо 25% по расчету. Это способствует высокой эффективности использования клубеньковыми бактериями продуктов фотосинтеза растений (использования энергии).
Водородные бактерии перспективны как продуценты белка. Их используют также для биорегенерации воздуха (удаления избытка С02) в замкнутых системах, где водород можно получать электролизом воды. Водородные бактерии служат источником для получения ферментов, особенно гидрогеназ. Гидрогеназы ведут процесс в двух направлениях: Н2 2Н+ + 2е (фермент содержит никель).
В почве водородные бактерии, по-видимому, создают микроконсорции, в которых они выступают автотрофным центром. Их спутниками-консументами могут быть простейшие, паразитические бактерии-бделловибрионы, микоплазмы, миксобактерии со способностью лизировать клетки других бактерий.
На основе межвидового переноса водорода за счет его образования и потребления в природных экосистемах создаются прочные микробные ассоциации, члены которых иногда трудно получить в виде чистых культур. Таковы многие ассоциации с участием метаногенных бактерий, целлюлозосбраживаюших анаэробов, азотфиксаторов. Деятельность такого рода ассоциаций обеспечивает активное протекание сложных многоступенчатых процессов превращения полимерных субстратов в почве, таких как разложение целлюлозы, пектина, ароматических соединений. Водород в этих процессах выступает как ключевой метаболит, связывающий в одну систему работу многих микроорганизмов аэробной и анаэробной зон.
Контрольные вопросы:
- Превращение кислорода
- Микроорганизмы и свободный кислород
- Значение кислорода для микроорганизмов
- Синглетный кислорода
- Водород и его производные
- Потребление водорода микроорганизмами
- Соединения водорода и их роль
- Микробиологические процессы образования водорода
- Образование и окисление молекулярного водорода
- Получения азотных удобрений по методу Габера-Боша
Литература:
13. Звягинцев Д.Г., Бабьева И.П., Зенова Г.М. Биология почв: Учебник. - 3-е изд., испр. и доп. - М.: Изд-во МГУ, 2005.
14. Звягинцев Д.Г. Микроорганизмы и почва. М.: МГУ, 1987.
15. Бабьева И.П., Зенова Г.М. Биология почв. М.: МГУ, 1989. с.336.
16. Мирчинк Т.Г.Почвенная микология.-М.: Изд. МГУ,1986.
4. Емцов В. Т.Микробы, почва, урожай. – М.: Изд. Колос,1980.
5. Илялетдинов А.Н.Микробиологические превращения азотосодержащих соединений в почве. Алма – Ата, 1976.
6. Почвенная микробиология./ Под ред. Д.И. Никитина /- М.: Изд. Колос,1979.
Лекция 11
Круговорот азота
Цель лекции: изучить пути образование и окисление азота в почве, а также процессы нитрификации и денитрификации азота
Ключевые слова: азот, молекулярный азот, биологическая фиксации, окисление, разложение, круговорот, микроорганизмы, клубеньковые бактерии, нитрификация и денитрификация
Вопросы:
1. Биологическая фиксация азота
2. Аммонификация
3. Нитрификация
4. Денитрификация
Азот — один из главных биофильных элементов. Он входит в состав основных полимеров любой живой клетки — белков-ферментов и структурных белков, нуклеиновых и аденозинфосфор- ных кислот. Его превращения в биосфере во многом определяют работу главного звена биологического цикла — образование первичной растительной продукции.
Большие запасы азота на Земле представлены его восстановленной формой — газообразным азотом воздуха N2 (79%). Кроме того азот встречается в различных восстановленных и окисленных формах (N2, NH3, N20, NO, N02, N03), которые входят в состав атмосферы Земли и содержатся в почве.
В почве иммобилизовано азота в гумусе и биомассе микроорганизмов в три раза больше, чем в растениях и животных вместе взятых. При этом азот в пахотной почве часто бывает в первом минимуме с точки зрения обеспечения питания растений, так как основная масса почвенного азота заключена в недоступных растениям сложных органических соединениях, которые минерализуются очень медленно. Это приводит к необходимости в условиях ведения сельского хозяйства с отчуждением урожая подкармливать растения вносимыми в почву азотными удобрениями.
Из почвы на Земле с урожаем происходит постоянный вынос азота, превышающий 100-200 млн т/год. Производство минеральных азотных удобрений, исчисляемое 70-80 млн т/год (по азоту), требует больших энергозатрат, которые в развитых странах составляют 40% и более от общего объема энергопотребления в сельском хозяйстве. В то же время коэффициент их использования растениями не превышает 30-50%. Следовательно, при широком применении минеральных азотных удобрений очень много азота не включается в урожай и его избытки вызывают загрязнение отдельных экосистем и биосферы в целом, что приводит к негативным последствиям (загрязнение избытком азота природных вод, загрязнение атмосферы окислами азота). Избыток связанного минерального азота очень вреден для биосферы. Таким образом, проблема азота превратилась в глобальную экологическую и социальную проблему. В связи с проблемой азота должны решаться важнейшие задачи жизнеобеспечения человечества: снижение энергозатрат на минеральные удобрения, охрана природной среды, разработка оптимизированных режимов для почвы с целью получения высоких урожаев без нарушения потенциального плодородия из-за потерь гумуса, создание новых способов контроля и управления биологическим азотом (азотфиксацией). Имеются предложения по решению проблемы азотфиксации: 1) передать гены азотфиксации растениям и прежде всего важным для сельского хозяйства злакам, 2) вызвать образование азотфиксирующих клубеньков у небобовых растений, прежде всего у пшеницы, кукурузы и др., 3) активизировать азотфиксацию у свобод ножи вуших или ассоциативных бактерий, 4) получать азотные удобрения в заводских условиях с помощью нитрогеназы и т.д. Несмотря на огромные усилия международного сообщества ученых на протяжении последних 40 лет ни одна из поставленных задач, к сожалению, не была выполнена. Необходимы дальнейшие исследования и новые идеи.
Круговорот азота в природе разбивается на несколько основных звеньев, в которых главными агентами выступают микроорганизмы. В этом цикле азот участвует в газообразной форме, в виде минеральных и органических соединений. При фиксации азота микроорганизмами происходит его восстановление до аммиака с последующим включением в аминокислоты; разложение органических азотсодержащих соединений (аммонификация) приводит к освобождению азота в форме аммиака, который далее окисляется последовательно до нитритов и нитратов (нитрификация). Окисленный азот вновь восстанавливается до N2 в процессе денитрификации. Аммонийные и нитратные формы соединений азота ассимилируются растениями и микроорганизмами, что приводит к временному закреплению азота в органических веществах, его иммобилизации в микробной биомассе. В процессах нитрификации и денитрификации возможны газообразные потери азота в форме его закиси — N20.
1 Биологическая фиксация азота Проблема азотного баланса почв и азотного питания растений — одна из центральных в почвоведении и агрохимии. От ее правильного решения зависит продуктивность и сохранение почвенного плодородия при многолетней эксплуатации земель и сохранение биосферы. В современный период эта проблема связывается с выяснением роли и значения «биологического азота». Под этим термином понимают азот, включенный в растения благодаря азотфиксации.
В естественных экосистемах растения используют азот из разных источников: из минеральных форм, из органических веществ в том числе и гумуса после его разложения микроорганизмами и от бактерий азотфиксаторов, связывающих молекулярный азот, который в форме аммония и аминокислот поступает в клетки корня. В агроценозах растения дополнительно получают азот из вносимых в почву минеральных и органических удобрений. Азот, включенный в биомассу растений в результате фиксации его бактериями, называют биологическим, а сами бактерии, связывающие молекулярный азот, — азотфиксаторами, или диазотрофами. Доля биологического азота в урожае по разным оценкам колеблется от 20 до 90%. Очень много биологического азота могут получать бобовые растения за счет симбиоза с клубеньковыми бактериями азотфиксаторами. Микробное связывание молекулярного азота — единственный путь снабжения растений азотом, не ведущий к нарушению экологической среды. Обратный эффект дает применение минеральных азотных удобрений.
Суммарная годовая продукция азотфиксации в экосистемах на Земле не известна, но, вероятно, она очень велика. В сельскохозяйственные угодья вносится 30% связанного азота в виде минеральных азотных удобрений. В основе производства удобрений лежит способ, разработанный в Германии и получивший название метода Габера-Боша. Он заключается в синтезе аммиака из молекулярного азота и водорода на катализаторах при высокой температуре и давлении. Это производство очень энергоемкое и сильно загрязняет окружающую среду.
В молекуле азота существует очень прочная тройная связь, которая обеспечивает инертность газообразного азота. Для перевода одной молекулы N2 b две молекулы аммиака требуется 225 ккал:
Биологический процесс восстановления азота представляет собой цепь ферментативных реакций, в которых главную роль играет фермент нитрогеназа. Активный центр этого фермента состоит из комплекса двух белков, содержащих железо, серу и молибден в соотношении Fe:S:Mo = 6:8:1. Выделена также ванадийсодержашая нитрогеназа, уровень активности которой на 30% ниже, чем у монитрогеназы.
Азот, растворенный в воде, поступает в азотфиксирующий центр, где в его активации участвуют два атома молибдена. После взаимодействия с азотом молибден восстанавливается за счет электронов, поступающих в активный центр через Fe-белок и Mo-Fe-белок. Этот перенос сопряжен с реакцией разложения АТФ, т.е. он идет с затратой энергии. В передаче электронов нитрогеназе участвует же лезосодержащий водорастворимый белок — фермент ферредоксин, а в активации водорода воды и переносе протонов — фермент гидрогеназа. Реакции, происходящие при работе нитрогеназы
Образование нитрогеназы у бактерий связано с наличием особых nif-генов, содержащихся или в ядерной ДНК или в плазмиде, ответственной за синтез этих специфических ферментных белков. Гены диазотрофности высоко консервативны и широко распространены у бактерий благодаря существованию эффективных систем обмена генетической информацией. В то же время диазотрофы не встречаются среди эукариот. Долгое время не обнаруживали азотфиксаторов и среди архебактерий. Однако в последнее время стало известно, что метаногены имеют особую термостабильную ферментную систему азотфиксации, отличную от термолабильной системы эубактерий. Таким образом, хотя свойство фиксировать азот присуще многим организмам, оно ограничено только царством прокариот.
У бактерий-азотфиксаторов встречаются все известные типы метаболизма. Среди них есть аэробы с дыхательным энергетическим обменом, анаэробы, осуществляющие брожение, хемоорганотрофы, автотрофы-фотосинтетики и хемолитоавтотрофы. Фиксация молекулярного азота для них не обязательный процесс, так как в присутствии азота в другой форме — минеральной или органической — они обеспечивают свои потребности связанным азотом.
Большое значение для активной азотфиксации имеет концентрация кислорода, так как фермент нитрогеназа подавляется молекулярным кислородом. У разных микроорганизмов выработались различные механизмы защиты нитрогеназного комплекса от кислорода.
У аэробных бактерий-диазотрофов (например, азотобактера) происходит активное связывание кислорода за счет повышения уровня дыхания при азотфиксации. Для быстрого расхода кислорода часть органических молекул сжигается клеткой «непроизводительно», т.е. путем окисления без запасания энергии. Другой механизм зашиты нитрогеназы в аэробных условиях — конформационное изменение тех компонентов ферментных белков, которые чувствительны к кислороду, а также связывание последних в стабильные комплексы с помощью специальных FeS-белков.
У цианобактерий, выделяющих кислород внутриклеточно при фотосинтезе, процесс азотфиксации перемещен в нефотосинтезирующие гетероцисты, где он пространственно изолирован от кислорода. Симбиотические клубеньковые бактерии защищены тканью клубенька и, кроме того, у них имеется леггемоглобин, который транспортирует необходимый для дыхания кислород непосредственно к бактероидам в менее активном связанном виде.
Азотфиксирующие бактерии по их связи с растениями делят на свободноживущие и симбиотические. В первой группе различают свободноживущие бактерии, которые не связаны непосредственно с корневыми системами растений, и ассоциативные, обитающие в сфере прямого влияния растения, в прилегающей к корням почве (ризосфере) или на поверхности корней (в ризоплане) и листьев (в филлоплане). К симбиотическим бактериям относятся те, которые живут в тканях растения, стимулируя образование особых разрастаний на корнях или листьях в форме клубеньков.
Симбиоз контролируется комплексом соответствующих комплементарных генов растения и бактерии.
Исследования показали, что некоторые бактерии не фиксируют азот. Вероятно не удалось подобрать условия для осуществления этого процесса. На протяжении 70 лет не удавалось установить азотфиксацию у чистых культур клубеньковых бактерий, так как не были подобраны подходящие условия. Достаточно было понизить парциальное давление кислорода и они начали фиксировать азот.
Так называемые свободноживущие азотфиксаторы распространены повсеместно и встречаются среди бактерий самых разных таксономических групп, относящихся как к хемотрофам, так и фототрофам, к аэробам и анаэробам. Первый диазотрофный микроорганизм был обнаружен в конце XIX в. (1898 г.) С.Н. Виноградским среди анаэробных маслянокислых бактерий род а Clostridium. Он назвал его в честь Пастера Clostridium pasteurianum. Вскоре (1901 г.) М. Бейеринком в Голландии был выделен аэробный азотфиксатор, получивший за свою морфологию и цвет (кокковидные бактерии, колонии которых с возрастом темнеют до шоколадного цвета) название Azotobacter chroococcum. Впоследствии способность к связыванию молекулярного азота была установлена у огромного числа почвенных бактерий, в том числе и у цианобактерий (прежнее название — синезеленые водоросли).
В благоприятных условиях, например на затопляемых почвах рисовников, прибавка азота за счет деятельности цианобактерий может достигать 25-50 кг/га в год. В зональных автоморфных почвах и в агроценозах их вклад в общее азотонакопление не превышает нескольких килограммов азота в год на 1 га.
Суммарная годовая потенциальная продукция азота свободноживущими азотфиксаторами (в условиях лабораторных экспериментов с внесением источников углерода) для разных почв разная и колеблется от десятков до сотен килограммов на гектар (кг/га в год): дерново-подзолистые 30-200; серые лесные 50-200; черноземы и черноземно-луговые 90-300; каштановые 100-300; сероземы 100-400.
Ассоциативной азотфиксацией называют накопление азота микроорганизмами, живущими в ассоциации с первичными продуцентами органического вещества — растениями, водорослями или цианобактериями. Эффект высокой нитрогеназной активности в этих ассоциациях связан с поступлением к бактериям от фототрофов легкодоступных источников углерода и энергии в виде экссудатов листьев и корней, внеклеточных слизей цианобактерий, корневого отпада и опада.
Влияние растений на азотонакопление в прикорневой зоне небобовых растений было отмечено еще в 1926 г. академиком С.П. Костычевым на примере табака и азотобактера. Процесс ассоциативной азотфиксации тесно сопряжен с фотосинтезом. Он протекает не только в корневой зоне, но и филлосфере, причем на долю последней приходится 10% фиксированного азота. Связующим звеном между фотосинтезом и азотфиксацией служат прижизненные выделения корнями органических веществ. Это могут быть сахара и органические кислоты, полисахаридные слизи (муцигель) и другие экссудаты.
Общее количество органических соединений, выделяемых корнями, может составлять до 30-40% от суммарной продукции фотосинтеза за вегетационный период, что было установлено, когда растению давали меченую С02. Исходя из этого расчета следует оценивать ассоциативную азотфиксацию примерно в 10-25 кг N2 на 1 га в год для почв средней полосы и до 50-100 кг — в субтропической и тропической зонах, однако пока такие расчеты остаются очень неточными. В длительных опытах, проведенных в нашей стране и за рубежом, было показано, что потери азота из почвы, в которую азотные удобрения не вносили, минимальны даже в случае монокультур небобовых растений по сравнению с почвами бессменного пара.
Поступающие в почву через корни органические вещества активизируют деятельность не только диазотрофов, но и микроорганизмов, разлагающих гумус. Таким образом, мобилизация азота в системе «почва-микроорганизмы-растение» происходит по двум каналам — связывание его из атмосферы и извлечение из органических веществ почвы. Включение того или иного процесса и их эффективность определяются наличием в почве легкодоступного азота. При внесении азотных удобрений микроорганизмы переходят от азотфиксации к связыванию (иммобилизации) растворимых форм азота с частичными потерями N2 в атмосферу за счет денитрификации. По мере увеличения соотношения углерода и азота в среде активизируется процесс азотфиксации, а усиление фотосинтетической деятельности растений приводит к возрастанию степени минерализации гумуса.
Вскрытие механизмов работы живой системы почвы приводит к пониманию путей управления этой системой. Применение сбалансированных доз азотных удобрений, повышая фотосинтетическую активность растения, косвенно способствует усилению азотфиксации и увеличивает долю биологического азота в урожае.
Ассоциативные микробы-диазотрофы есть и у животных. Доказана способность к азотфиксации у бактерий кишечной группы рода Escherichia, обитающих в качестве комменсалов в пищеварительном тракте человека. Азотфиксаторы обитают в пищеварительном тракте всех позвоночных и беспозвоночных животных. Сколько они фиксируют азота в реальных условиях, остается неизвестным. Эта область исследований еще мало разработана, и микробные ассоциации во многих случаях плохо идентифицированы. Особый интерес вызывают животные, питающиеся кормом, содержащим мало азота (жвачные, грызуны, термиты).
Симбиотическая азотфиксация — важнейший резерв биологического азота в почве. Микробные азотфиксирующие симбионты описаны у многих видов разных растений. Проникая в ткани растения, они вызывают опухолевидные разрастания в форме клубеньков на корнях или стеблях.
Наиболее активные и хорошо изученные диазотрофные симбионты — клубеньковые бактерии бобовых растений. Семейство бобовых содержит 674 рода и 19 тыс. видов, из которых 200 используются в сельском хозяйстве. Бобовые распространены по всему миру и по значению занимают второе место после злаков. Уникальным свойством бобовых является формирование корневых клубеньков как у культурных, так и у дикорастущих растений. Однако не все бобовые образуют клубеньки, большинство видов даже не исследовано в этом отношении.
Образование клубеньков и последующее развитие азотфиксирующего симбиоза у бобовых происходит в ответ на инфицирование бактериями нескольких родов, относящихся к семейству Rhizobiaceae. В природе и в сельском хозяйстве эти симбиозы играют важную роль как поставщики связанного азота. Не все представители семейства Rhizobiaceae являются полезными. Некоторые виды рода Agrobacterium вызывают болезни растений. Представители рода Phyllobacteriumобразуют клубеньки на листьях некоторых растений, значение которых пока не ясно.
Первым в чистую культуру бактерии из клубеньков выделил М. Бейеринк. Систематика клубеньковых бактерий первоначально строилась на названии растения хозяина, была очень проста, понятна и удобна для практического использования клубеньковых бактерий при инокуляции бобовых растений. Это были клубеньковые бактерии клевера, гороха, сои, люпина, люцерны и др. Все они относились к одному роду Rhizobium. Однако в последнее время особенно в связи с глубокими и разносторонними исследованиями нуклеиновых кислот оказалось, что это очень разнородная группа бактерий и часто резко отличающиеся бактерии образуют клубеньки на одном и том же растении и даже один вид бактерий может иметь много растений-хозяев.
В настоящее время выделяют по меньшей мере четыре рода клубеньковых бактерий:
1) Rhizobium, например Rhizobium leguminosarum bv trifolii (клевер), bv viceae (горох), bv meliloti (люцерна). Это быстрорастущие бактерии;
2) Sinorhizobium(вика, люцерна, соевые, у сесбании клубеньки образуются на стебле);
3) Mezorhizobium;
4) Bradyrhizobium, например Bradyrhizobium japonicum(соя). Это медленнорастущие бактерии.
Обозначение bv — биовариант.
Гены азотфиксации у некоторых родов располагаются на плазмиде, у других — на хромосоме.
Благодаря азотфиксирующим симбионтам бобовые обогащают почву азотом. В зависимости от условий роста растений они накапливают азот от 60 до 300 кг/га в год.
Вскоре после открытия роли клубеньковых бактерий в накоплении азота попытались использовать эти бактерии для обработки семян бобовых перед посевом. Приготовленные на основе клубеньковых бактерий препараты получили в разных странах разные названия. Изготовленный впервые в Германии в 1896 г. препарат был назван нитрагином; в 1906 г. он был получен в Англии, в 1907 г.— в США. В Чехословакии препарат клубеньковых называли нитразоном, в Австралии — нитрофиксом. В России первые партии нитрагина были изготовлены в 1930-1935 гг.
Первый очень важный этап при изготовлении нитрагина состоит в выделении и подборе производственного штамма клубеньковых бактерий. К каждой культуре бобового растения нужно подбирать соответствующие ему штаммы: для клевера клубеньковые бактерии клевера, для гороха клубеньковые бактерии гороха, для люпина бактерии люпина. Выделяют бактерии обычно непосредственно из клубенька. Берут крупный клубенек розового цвета, окрашенный леггемоглобином, стерилизуют его поверхность сулемой или каким-либо другим антисептиком, разрезают стерильным скальпелем, извлекают небольшое количество растительной ткани и шпателем растирают ее по поверхности бобового агара в чашке Петри. Отобранный штамм должен отличаться следующими свойствами: специфичностью по отношению к.определенному растению, 2) генетической устойчивостью, 3) свойством доминирования, т.е. способностью быстро размножаться в почве и численно доминировать над местными малоэффективными штаммами, которые могут находиться в почве, 4) инвазивностью — способностью проникать в корни растений, активностью, т.е. высокой способностью к азотфиксации, 6) эффективностью — способностью повышать урожай. Он должен образовывать большие немногочисленные розовые от леггемоглобина клубеньки. Образование большого количества мелких белых клубеньков свидетельствует о том, что этот штамм плохой. Хорошо развитые клубеньки образуют вещества, препятствующие дальнейшему клубенькообразованию. Лучшим способом, по которому можно судить о ценности штамма, является определение прибавки урожая, которую он дает. Этот метод имеет только тот недостаток, что он очень трудоемок. Если, например, испытывается сто штаммов, нужно иметь множество опытных делянок и проводить эксперименты минимум три года. Кроме того, урожай зависит от множества факторов и вычленить среди них влияние азотфиксации не так-то просто.
В России микробиологическая промышленность на основе клубеньковых бактерий выпускает препарат ризоторфин (торфяной нитрагин).
Технология производства ризоторфина заключается в следующем:
1) выращивание жидкой культуры клубеньковых бактерии в колбе (посевной материал), 2) выращивание бактерий в большом ферментере, в который вносится посевной материал, 3) подготовка торфа для заражения культурой (нейтрализация реакции среды, внесение питательных добавок, NPK, микроэлементов, органических веществ), раскладывание влажного торфа в полиэтиленовые пакеты, герметизация пакетов, стерилизация у-лучами, 4) внесение в пакет с помощью шприца клубеньковых бактерий, 5) двухнедельное подращивание бактерий в торфе при комнатной температуре с увеличением численности бактерий в 100 раз и более, 6) хранение ризоторфина в холодильнике до 6-8 месяцев. При этом титр клубеньковых бактерий не должен сильно падать.
Ризоторфин предназначен для предпосевной обработки семян зернобобовых культур и бобовых трав: гороха, люпина, сои, вики, фасоли, люцерны, клевера и др. Для каждого вида бобовых растений ризоторфин готовится отдельно из разных видов клубеньковых бактерий. Препарат представляет собой сыпучую массу с влажностью 50-100%. В 1 г препарата содержится не менее 200 млн клеток клубеньковых бактерий.
Гектарная порция ризоторфина 200 г. Предпосевная обработка семян производится путем разбавления препарата в воде и замачивания семян в день посева. При использовании ризоторфина нельзя применять ядохимикаты (фунгициды, инсектициды).
Клубеньковые бактерии почти полностью обеспечивают потребности растений в азоте. Многолетняя практика применения ризоторфина показывает, что он сильно повышает урожай сои, гороха, люцерны и клевера. При этом содержание белка в урожае существенно повышается. Наиболее высокий хозяйственный эффект ризоторфин дает лишь при соблюдении прогрессивной технологии возделывания бобовых культур. Высев обработанных ризоторфином семян необходимо производить во влажную почву, удобренную фосфором, калием и микроэлементами, особенно молибденом. На почвах слабоокультуренных, бедных азотом, применение ризоторфина следует сочетать с внесением небольших доз минеральных азотных удобрений — не более 45 кг/га. На хорошо окультуренных почвах использование ризоторфина исключает необходимость внесения минерального азота под все виды бобовых.
Инокуляция бобовых клубеньковыми бактериями особенно эффективна на площадях, где ранее не возделывалась данная бобовая культура и соответствующие специфичные бактерии в почве отсутствуют. В почве после посева бобовых клубеньковые бактерии сохраняют высокий титр до 5 лет.
Валовое содержание азота в почве может быть высоким и в черноземах достигает Ют/га. Однако почти 99% его связано в органических соединениях, в том числе в гумусе, поэтому он недоступен для растений и обычно выступает в качестве основного лимитирующего фактора роста растений в сельском хозяйстве. Процесс минерализации азотсодержащих органических соединений с выделением аммиака называется аммонификацией. Этому процессу подвержены белки и их производные — пептиды и аминокислоты, нуклеиновые кислоты и их дериваты — пуриновые и пиримидиновые основания, мочевина и мочевая кислота, азотсодержащий полисахарид хитин и гумусовые кислоты. Уже в конце XIX в. француз Э. Маршель показал, что процесс аммонификации носит универсальный характер и осуществляется многими микроорганизмами в широком диапазоне условий.
2 Аммонификация Это наиболее динамичное звено в цикле азота. При внеклеточных превращениях белков конечным продуктом являются аминокислоты. В процессе участвуют разнообразные протеазы очень многих микроорганизмов (бактерий и грибов). Далее аминокислоты либо поступают в клетки микроорганизмов, либо вовлекаются в химические реакции в почве. Внутриклеточные превращения аминокислот возможны по четырем направлениям: синтез белка, переаминирование, декарбоксилирование и дезаминирование. Последнее приводит к выделению свободного аммиака. В аэробных условиях кроме аммиака при аммонификации образуются С02 и окислы серы, а в анаэробных — жирные и ароматические кислоты (бензойная, ферулиновая и др.), спирты, неприятно пахнущие продукты (индол, скатол, метилмеркаптан) и ядовитые амины — кадаверин, путресцин.
Образующиеся в переувлажненных почвах при анаэробиозе продукты аммонификации обладают фитотоксическими свойствами и могут вызывать угнетение роста растений.
В процессе аммонификации помимо бактерий участвуют актиномицеты и грибы. Активные возбудители аммонификации известны среди разнообразных аэробных и анаэробных бактерий из многих родов. Это малоспецифическая функция. Для процесса аммонификации большое значение имеет соотношение С: N в разлагаемом субстрате. Чем меньше это отношение, тем выше эффективность аммонификации, определяемой по количеству NH3 от общего количества превращенного азота. На каждые 50 г разложенного органического вещества бактерии используют на синтез белка биомассы 2 г азота (С: N = 25). При содержании азота в органическом веществе разлагающейся растительной массы менее 2% он будет полностью иммобилизован в клетках микроорганизмов, а при более высоком его содержании (С: N < 25) будет выделяться аммиак. Это проявляется при использовании разных органических удобрений. Отношение С: N в навозе низкое, и его разложение поэтому сопровождается накоплением аммиака, а для соломы С: N высокое и внесение в почву соломы без минеральных азотных удобрений приводит к иммобилизации, т.е. к закреплению всего азота в микробных клетках и азотному голоданию растений.
Аммонификация нуклеиновых кислот.Помимо внутриклеточных превращений нуклеиновых кислот они подвергаются внеклеточному распаду под действием нуклеаз, выделяемых микроорганизмами во внешнюю среду. Внеклеточные ДНК-азы и РНК-азы найдены у многих микроорганизмов. Аммиак выделяется при распаде пуриновых и пиримидиновых оснований, входящих в состав нуклеиновых кислот.
Аммонификация мочевины и мочевой кислоты. Мочевина попадает в почву с мочой млекопитающих, а также образуется почвенными грибами. Например, ее содержание в шампиньонах достигает 13% от сухой биомассы. В год на Земле образуется около 30 млн т мочевины. Это огромные ресурсы азота, так как мочевина по химическому строению представляет собой диамид угольной кислоты и содержит 47% азота. Разложение ее протекает следующим путем:
(NH2)2CO + 2Н20 -» (NH4)2C02 -» 2NH3 + С02+ Н20.
Мочевину разлагают микроорганизмы, обладающие ферментом уреазой и широко распространенные в почве. Эти бактерии в большом числе содержатся в рубце жвачных животных, поэтому мочевину добавляют и в корма. Микроорганизмы рубца вызывают ее разложение (аммонификацию) и далее переводят в белок. Более половины почвенных микроорганизмов обладают ферментом уреазой и могут превращать мочевину в аммиак.
Она образуется как конечный продукт белкового обмена птиц, пресмыкающихся и насекомых. Экскременты змей содержат до 30% мочевой кислоты, а в гуано (преобразованном помете птиц) — 25%. Выводится из организма мочевая кислота с минимальным количеством воды или даже в твердом виде.
В моче млекопитающих концентрация мочевой кислоты ничтожна.
Аммонификация мочевой кислоты в местах скопления гуано в аридных областях приводит к накоплению нитратов, так как образующийся аммиак окисляется нитрифицирующими бактериями, а при низкой влажности нитраты не вымываются. Таковы источники богатых залежей нитратов в Чили, Перу и Южной Африке. Гуано используется как ценное азотное и фосфорное удобрение, оно содержит около 9% азота, 13% фосфорной кислоты, калий и кальций.
Аммонификация хитина. Хитин — азотсодержащий полисахарид, полимер ацетилглюкозамина. Он содержится в клеточных стенках грибов, в панцирных покровах беспозвоночных. При его разложении образуется глюкоза (и продукты ее превращения), а также аммиак. Ферменты хитиназы особенно распространены у актиномицетов: до 98% изученных актиномицетов проявляли активность в разложении хитина. Из грибов активную роль в разложении хитина играют мукоровые, аспергиллы и др. Есть и хитинолитические миксобактерии и некоторые другие бактерии.
Аммиак, образующийся при микробном разложении вышеуказанных соединений растительного и животного происхождения, претерпевает в почве различные превращения: 1) потребляется растениями как источник азота, 2) иммобилизуется (ассимилируется) в процессе метаболизма почвенных микроорганизмов,
3) окисляется в нитриты и нитраты. Этот последний процесс носит название нитрификации и является единственным в цикле азота, который ведет к образованию окисленных форм азотистых соединений из аммиака.
3 Нитрификация Биологическая природа образования в почве нитратов была установлена во второй половине XIX в. Т. Шлезингом и А. Мюнцем. Первое предположение об участии микроорганизмов в этом процессе было высказано J1. Пастером. Однако выделить микроорганизмы, ответственные за процесс образования нитратов, долгое время никому не удавалось. С.Н. Виноградский применил для их выделения элективную среду, представляющую собой раствор чистых минеральных солей, в том числе и сернокислого аммония, которым он пропитал пластинки кремнекислого геля. Отсутствие органических соединений в такой среде исключало возможность развития банальных гетеротрофов. В 1891 г. ему удалось выделить микроорганизмы, названные нитрификаторами. Они были представлены двумя группами, каждая из которых проводила один из двух этапов окисления азота: сначала образовывались нитриты, а затем — нитраты.
Первую группу нитрозных (нитритных) бактерий представляют роды Nitrosomonas, Nitrosococcus, Nitrosospira, Nitrosolobus, Nitrosovibrio, вторую — нитратных бактерий — Nitrobacter, Nitrospina, Nitrococcus. Названия родов свидетельствуют о том, что бактерии той и другой группы морфологически разнообразны — это кокки, палочки, спирально изогнутые клетки. Все они — грамотрицательные бактерии, в большинстве своем очень мелкие, часто подвижные, с полярными или перитрихиальными жгутиками. Многие имеют развитые системы внутрицитоплазматических мембран. В метаболическом отношении эти нитрифицирующие бактерии — хемолитоавтотрофы, использующие энергию окисления аммиака или азотистой кислоты для синтеза органических веществ из С02, т.е. осуществляющие хемосинтез.
По современным представлениям, процесс окисления аммиака и нитритов локализуется на цитоплазматической мембране. Окисление аммиака до нитрата происходит ступенчато с потерей электронов. Сначала образуется гидрокисиламин, который далее окисляется до нитрита. Промежуточным продуктом может быть нитроксил:
ЫН3+02 + НАДН2 -*NH2OH + Н2ООН+ НАД+,
гидроксиламин
N20
т
NH2OH —>[HNO] + 2e + 2H+, нитроксил
NH20H + 02 -^N02 + Н20+ Н +.
Вторая фаза нитрификации сопровождается потерей двух электронов. Донором кислорода при окислении нитритов до нитрата служит вода:
N02 + Н20 - N03 + 2Н+ + 2е.
Электроны, освобождающиеся в первой и второй фазе нитрификации, поступают в дыхательную цепь на цитохромы. Все нитрифицирующие бактерии — облигатные аэробы. Оптимальные условия для их роста лежат в диапазоне температур 25-30 °С и pH 7,5-8,0. В кислых почвах автотрофная нитрификация не происходит, этот процесс замещается окислением аммиака или других восстановленных азотсодержащих веществ до нитритов и нитратов гетеротрофными микроорганизмами — грибами и бактериями. Это явление названо гетеротрофной нитрификацией, так как образование нитратов сопровождается параллельно идущим окислением органических веществ.
Широко распространенные в почвах бактерии родов Arthrobacter, Pseudomonas и другие окисляют оксимы и гидроксаматы, где гидроксиламин связан с органическими молекулами. Окисление может быть связано с ростом или образованием метаболи тов в стационарной фазе. Возможно, окисление происходит с участием активного кислорода, образующегося при разложении перекиси водорода пероксидазой. Таким образом, гетеротрофная нитрификация не служит источником энергии для микроорганизмов.
В природе гетеротрофная нитрификация осуществляется везде, где аммиак образуется в условиях обилия органических веществ, например в компостных кучах, в скоплениях гуано (происхождение чилийской селитры тоже обязано, по-видимому, этому процессу), в аэротенках, в евтрофных водоемах. По масштабам гетеротрофная нитрификация, по-видимому, превышает автотрофную. Величину гетеротрофной нитрификации устанавливают, добавляя в почву ингибиторы нитрификации, которые подавляют только автотрофную нитрификацию и становится возможным определение величины гетеротрофной нитрификации, основным агентом которой являются грибы.
После того как академик Д.Н. Прянишников доказал, что растения используют соединения аммония, произошла переоценка значения нитратов для питания растений. Ранее нитраты считались наилучшей формой азотных удобрений для растений. Особенно остро встал вопрос об азотном питании, когда стали применять сверхвысокие дозы нитратных удобрений. Было показано, что растения используют не более 30-50% вносимого азота нитратов, а остальная часть в превращенном виде закрепляется в составе органического и минерального вещества почвы, иммобилизуется в клетках микроорганизмов, подвергается восстановлению до газообразных продуктов — закиси азота и N2, вымывается в грунтовые воды, откуда они выносятся в реки, моря и океаны. Объем поступлений азота с нитратами в воды составляет миллионы тонн в год. Возникла необходимость подавления процесса нитрификации. Предложены многочисленные промышленные препараты ингибиторов нитрификации (нитропирин, АТС, N-серв и др.), синтезируемые на пиридиновой основе. Применение нитропирина, например, повышает использование азотных удобрений до 50-70%. Указанные препараты подавляют первую фазу автотрофной нитрификации, но не действуют на гетеротрофную нитрификацию.
Так же как и в случае с аммиаком, судьба образующихся при нитрификации продуктов неоднозначна. Нитраты претерпевают следующие превращения: 1) используются высшими растениями в процессах ассимиляции, 2) вымываются в водоемы и вызывают их евтрофизацию, 3) используются (иммобилизуются) микроорганизмами в процессе ассимиляционной нитратредукции, 4) восстанавливаются до молекулярного азота в результате диссимиляционной нитратредукции или денитрификации.
Иммобилизация азота. Азот аммонийных и нитратных соединений, поглощенных микробными клетками, включается в органические полимеры и временно выводится из круговорота, так как он становится недоступным для растений. Процесс иммобилизации сказывается на применении удобрений: происходит снижение коэффициента использования азотных удобрений растениями в условиях микробной конкуренции за субстрат. Доля иммобилизованного азота зависит от применяемого удобрения и почвенных условий. В случае одновременного внесения в подзолистые почвы минеральных удобрений и соломы количество не превышает 20%. В орошаемом земледелии иммобилизация азота — это средство сокращения потерь азотных удобрений от вымывания. Один из приемов увеличения доли биологически закрепленного азота — внесение молибденсодержаших удобрений. Так как молибден входит в активный центр ферментов азотного обмена— нитрогеназы и нитратредуктазы, то происходит повышение уровня органического азота в почве за счет усиления азотфиксации и ассимиляции нитратов микроорганизмами.
Процессы микробиологического закрепления азота следует учитывать при выборе способов обработки почвы, противоэрозионных мероприятий и при внесении удобрений. Например, запашка соломы под зерновые перед посевом закрепляет азот и вызывает азотное голодание растений; внесение соломы осенью удерживает азот от вымывания; солома, внесенная под бобовые, всегда дает положительный эффект.
Иммобилизованный азот — наиболее лабильная часть органического азота почвы. Этот азот минерализуется в почве в первую очередь и является ближайшим резервом в питании растений. Часть иммобилизованного азота удобрений включается во фракции почвенного гумуса, устойчивые к разложению. Микробные клетки выедаются простейшими и происходит реутилизация азота. Через микробные клетки в почве проходит поток азота, в 2-3 раза превышающий ежегодный вынос азота с урожаем; 10-30% азота микробной биомассы поступает в растения. В почвах Нечерноземной зоны России максимально возможные величины потока азота через микробную биомассу определяются в 250 кг/га за сезон.
4 Денитрификация Термином «денитрификация» обозначают сумму процессов, которые ведут к частичному или полному восстановлению нитратов до нитритов и затем газообразных форм азота NO, N20, N2. Различают ассимиляционную и диссимиляционную денитрификацию. В узком смысле термина под денитрификацией понимают только диссимиляционное восстановление окисленных форм азота.
Ассимиляционные процессы восстановления нитратов до NH4, которые приводят к синтезу азотсодержащих клеточных компонентов, свойственны всем растениям и многим микроорганизмам, которые могут расти на средах с нитратами. Они проходят в аэробных и анаэробных условиях. Этот путь преобразования нитратов называется ассимиляционной нитратредукцией в отличие от диссимиляционной нитратредукции, или денитрификации, которая представляет собой процесс, в анаэробных условиях обеспечивающий микроорганизмы энергией, но с потерей восстановленных соединений азота или молекулярного азота.
Денитрификация протекает в анаэробных условиях и подавляется кислородом. Нитраты в анаэробных условиях выполняют функцию акцепторов электронов, поступающих с окисляемого субстрата, которым может быть как органическое, так и неорганическое вещество. В первом случае процесс проводят хемоорганотрофы, во втором — хемолитотрофы. Ферменты диссимиляционной нитратредукции — это нитратредуктазы, содержащие MoFeS-белки. Они локализованы на клеточных мембранах. Конечные продукты денитрификации выделяются из клетки в газообразной форме в виде NO, N20 или N2 в зависимости от вида микроорганизма и от условий среды. Нитраты восстанавливаются в следующей последовательности:
N03– NO2 — NO — N20 — N2.
Энергетический выход при переносе электронов к N02~ и N20 приблизительно одинаков и в сумме составляет около 70% энергетического выхода при дыхании с участием свободного кислорода. Поэтому процесс денитрификации иначе называют анаэробным нитратным дыханием.
Число родов бактерий, представители которых способны к нитратному дыханию, весьма велико. При этом первый этап — переход нитратов в нитриты — способны осуществлять разнообразные микроорганизмы, в том числе и эукариоты — водоросли, грибы и дрожжи. Полную денитрификацию до молекулярного азота проводят только прокариоты. Большинство из них — факультативно анаэробные хемоорганотрофы многих родов, использующие нитраты как окислители органических субстратов. При этом последние окисляются до С02 и Н20, как и в акте кислородного дыхания, а азот теряется в газообразных формах:
Органическое вещество + KN03 -» С02 + Н20+ N2.
Представители хемолитототрофных бактерий-денитрификаторов — Thiobacillus denitriflcans, Thiomicrospira denitrificans, Paracoccus denitrificans. Нитраты для них выступают в качестве окислителей неорганических веществ, например серы, Н2 или тиосульфата, восстанавливаясь при этом либо полностью до N2, либо только до нитритов (у Thiobacillus thioparus).
Все денитрифицирующие бактерии — факультативные анаэробы, осуществляющие восстановление нитратов только в отсутствие свободного кислорода. В аэробной обстановке они могут переключаться на дыхание для получения энергии, а нитраты использовать в процессах ассимиляционной нитратредукции как источники азота. Помимо этого, многие или даже все денитрификаторы, как показали исследования последних лет, обладают способностью к азотфиксации. Все ферменты азотного цикла (нитрогеназа азотфиксаторов, нитритоксидоредуктаза нитрификаторов, ассимиляторная и диссимиляторная нитратредуктазы) имеют низкомолекулярный молибденсодержащий кофактор, который может быть передан от одного фермента к другому.
Ферменты ассимиляционной и диссимиляционной нитратредукции имеют большое сходство, но при диссимиляционном процессе в анаэробных условиях фермент погружается в мембрану, и его работа по восстановлению нитратов обеспечивает энергетический процесс получения клеткой АТФ. Изучение известного азотфиксатора Azospirillum lipoferum показало, что при наличии нитратов в анаэробных условиях этот микроорганизм проводит денитрификацию, а в аэробных — ассимилирует нитрат. В определенных условиях процессы азотфиксации и нитратредукции могут идти в клетке параллельно.
Таким образом, процессы ассимиляционной и диссимиляционной нитратредукции, азотфиксации и денитрификации взаимно связаны и могут осуществляться одними и теми же бактериями. Направление процессов будет зависеть от конкретных условий.
В процессе диссимиляционной нитратредукции помимо молекулярного азота могут образовываться другие газообразные продукты — NO, N20 и NH3.
Особенно остро стоит проблема образования и стока закиси азота, так как с ней связывают некоторые природные и климатические явления — разрушение озонового слоя в стратосфере, некоторые фотохимические реакции. Один из самых мощных источников N20— микробная денитрификация.
Закись азота, как, по-видимому, и окись, относится к обязательным продуктам денитрификации, что было доказано с использованием ацетилена как ингибитора восстановления N20 в N2. Добавление ацетилена к почвенной системе приводит к накоплению закиси азота в среде. N20 образуется также в первой фазе нитрификации в условиях лимита кислорода и диссимиля- ционного восстановления нитрата в аммоний. Сопряжение многих микробиологических процессов через N20 при противоположном влиянии ряда внешних факторов на ее образование и удаление может обеспечить фильтр для выхода закиси азота из почвы в атмосферу (см. рис. 83). Один из путей удаления закиси азота в аэробных условиях — неспецифический процесс, проводимый комплексом микроорганизмов, образующих перекись водорода и каталазу. Разложение перекиси водорода каталазой в окислительных условиях приводит к образованию из N20 окиси азота и N02". К реакциям такого типа, по-видимому, способны многие почвенные микроорганизмы, и процесс зависит не от агента реакции, а от экологических условий. В анаэробных условиях N20 может служить субстратом нитрогеназы — фермента азотфиксации, который восстанавливает ее до N2 или аммиака. Итак, денитрификация в современном понимании — это один из путей биологического восстановления нитратов. Процесс характеризуется тем, что он имеет энергетическое значение для микроорганизмов, протекает в анаэробных условиях и приводит к образованию газообразных форм азота в виде NO, N20 и N2. До молекулярного азота осуществляют его только прокариоты — представители многих таксономических, физиологических и экологических групп.
В природе денитрификация имеет широкие масштабы. В результате в атмосферу ежегодно поступает 270-330 млн т N2, т.е. этот процесс сравним с азотфиксацией. Большая часть этого азота — потери из почвы. Особенно велики они в переувлажненных почвах, при внесении нитратов вместе с навозом и другими органическими удобрениями. Активно протекает денитрификация в ризосфере растений за счет постоянного поступления органических веществ в форме корневых выделений.
Зависимость денитрификации в прикорневой зоне от концентрации углеродсодержащих соединений четко проявляется в наличии сезонной динамики, совпадающей с динамикой развития растений.
На интенсивность денитрификации сильно влияет аэрация почвы и pH. Усиление аэрации и кислая среда снижают скорость денитрификации и повышают соотношение N20/N2b конечных продуктах. Разнонаправленные процессы денитрификации и нитрификации в сухих бесструктурных почвах обычно протекают последовательно: при увлажнении — денитрификация, при иссушении — нитрификация. Чередование этих процессов ведет к быстрой потере азота почвой.
В структурных почвах оба процесса идут одновременно, но в пространственно разделенных микрозонах с разным окислительно-восстановительным потенциалом. Так же совершаются процессы в зоне корневых систем, где имеется градиент концентрации кислорода и органические вещества, что стимулирует денитрификацию.
Денитрификация — одна из основных причин неполного использования растениями вносимых в почву азотных удобрений. Уменьшения потерь азота можно добиться путем применения гранулированных удобрений, слаборастворимых азотных туков и дробным внесением удобрений. Регулировать этот процесс также можно путем создания определенного водного режима почв, меняя таким образом аэрацию. Предложены и химические ингибиторы денитрификации, но это фактически ведет к уничтожению большинства почвенных бактерий и не поддерживается почвенными микробиологами.
Иногда ставится вопрос, является ли денитрификация положительным или отрицательным процессом. Для сельского хозяйства — это азотные потери, а для природы в целом — это оздоровительный процесс, так как именно в результате денитрификации происходит предохранение фунтовых вод и водоемов от чрезмерного накопления в них нитратов, вымываемых из почв. С позиции конечных продуктов ассимиляционное восстановление нитратов в аммоний — более желательный процесс, чем образование N2 и N20, однако, в природе не всегда происходит то, что нужно человеку. Задача науки — вскрыть механизмы природных процессов и научиться их регулировать, чтобы направлять в нужную сторону. Денитрификация имеет положительное значение при очистке сточных вод, содержащих большие количества связанного азота, которые не должны поступать в реки и озера.
Контрольные вопросы:
1. Круговорот азота в биосфере?
2. Роль и участие азота в биологическом круговороте веществ?
3. Нитрификация и ее значение?
4. Процесс аммонификация?
5. Денитрификация и ее роль в природе?
6. Представители хемолитототрофных бактерий-денитрификаторов?
7. С помощю каких микроорганизмов проходит разложение азотистых веществ?
Литература:
17. Звягинцев Д.Г., Бабьева И.П., Зенова Г.М. Биология почв: Учебник. - 3-е изд., испр. и доп. - М.: Изд-во МГУ, 2005.
18. Звягинцев Д.Г. Микроорганизмы и почва. М.: МГУ, 1987.
19. Бабьева И.П., Зенова Г.М. Биология почв. М.: МГУ, 1989. с.336.
20. Мирчинк Т.Г.Почвенная микология.-М.: Изд. МГУ,1986.
7. Емцов В. Т.Микробы, почва, урожай. – М.: Изд. Колос,1980.
8. Илялетдинов А.Н.Микробиологические превращения азотосодержащих соединений в почве. Алма – Ата, 1976.
9. Почвенная микробиология./ Под ред. Д.И. Никитина /- М.: Изд. Колос,1979.
Лекция 12
Круговорот серы
Цель лекции: ознакомить с круговорот серы в биосфере и раскрыть роль серобактерий в повышении плодородия почвы
Ключевые слова: круговорот серы, серобактерии, органические вещество, восстановление и окисление серы
Вопросы:
- Серобактерии
- Физиологические исследования серобактерий
1 Серобактерии Сера — биогенный элемент, необходимый для жизни. В белках сера содержится в форме некоторых аминокислот (цистин, цистеин), входит в молекулы витаминов, коферментов, присутствует в растительных эфирных маслах. В растениях содержание серы колеблется от 0,2 до 1,8%, в организме человека — около 0,4%. Соединения серы в живой клетке участвуют в важных метаболических процессах (например, она входит в состав ферментов нитрогеназы и нитратредуктазы, ответственных за превращения азота — его фиксацию и восстановление).
С урожаем из почв ежегодно выносится от 10 до 80 кг/га серы в зависимости от биологических особенностей сельскохозяйственных растений и величины урожая. Так называемые безбалластные минеральные удобрения не содержат серы, и дефицит ее в почве с ростом урожаев постоянно увеличивается. Поэтому необходимы изучение серного режима почв, разработка методов диагностики дефицита серы и эффективного применения серосодержащих удобрений. В почвах сера претерпевает разнообразные превращения, переходя из неорганических соединений в органические и обратно. В почве в виде неорганических соединений сера бывает окисленной (сульфаты, политионаты), восстановленной (сульфиды) и редко молекулярной. При разложении остатков животных, растений и микроорганизмов освобождаются серосодержащие аминокислоты, тиоспирты, тиофенолы, тиоэфиры, гетероциклические соединения (например, тиофен), в которых сера находится в восстановленном состоянии. В органических веществах сера обычно содержится в восстановленном состоянии в виде SH-групп. Есть органические соединения, содержащие серу в окисленной форме. Это сульфиновые и сульфокислоты и их соли, применяемые в моющих средствах как поверхностно-активные вещества (ПАВ), но это неприродные соединения. Они могут попадать в почву со сточными водами.
Цикл превращений серы сходен с циклом азота: он включает окислительные и восстановительные звенья, а также превращение серы без изменения ее валентности. В этих превращениях участвует много разнообразных групп микроорганизмов: аэробных и анаэробных, хемо- и фототрофов, истинных бактерий и архебактерий. В последние десятилетия было сделано много открытий в микробиологии цикла серы в связи с изучением архебактерий. Некоторые из них оказались активными участниками превращения соединений серы, способными осуществлять неизвестные ранее процессы.
Рассмотрим цикл серы, объединив в отдельные звенья процессы окислительного характера, восстановительные и процессы освобождения серы при разложении органических веществ. Окисление серы и ее восстановленных неорганических и органических соединений происходит в аэробных и анаэробных условиях с участием разных групп микроорганизмов. В аэробных условиях окислительные процессы осуществляют хемоавтотрофные прокариоты — серные бесцветные (неокрашенные) бактерии и тионовые бактерии, термоацидофильные архебактерии, а также некоторые типичные гетеротрофные бактерии. В анаэробных процессах участвуют фототрофные серные пурпурные и зеленые бактерии, осуществляющие бескислородный фотосинтез.
Бесцветные серобактерии по строению сходны с цианобактериями. Основное их отличие от последних — отсутствие пигмента. По морфологии среди них различают одноклеточные: крупные подвижные (Thiovulum) и неподвижные (Achromatium) бактерии; виды с мелкими спиралевидными или другой формы клетками (Thiospira, Thiobacterium); нитчатые многоклеточные неподвижные (Thiothrix) и скользящие бактерии (Beggiatoa, Thioploca). Общим признаком всех организмов этой группы служит способность откладывать внутриклеточно образующуюся при окислении H2S молекулярную серу. Механизм этого процесса и его физиологический смысл, возможно, различен у разных представителей и до конца еще не ясен.
С.Н. Виноградский впервые предположил возможность использования микроорганизмами энергии окисления неорганических соединений для синтеза органических веществ из С02 — хемосинтеза. Четкие доказательства наличия хемосинтеза в чистых культурах бесцветных серобактерий были получены только в последнее время, например у Beggiatoa. В то же время известны случаи окисления сероводорода в результате гетеротрофной жизни некоторых бактерий из группы бесцветных серных за счет образования ими перекиси водорода при дыхании. Физиологический смысл этого процесса заключается в детоксикации среды путем разложения образующегося токсичного продукта метаболизма Н202 с участием сульфидов, которые окисляются до молекулярной серы.
Фотосинтезирующие серные бактерии в отличие от бесцветных анаэробы. Наличие в их клетках пигментов бактериохлорофиллов придает им красную или зеленую окраску, поэтому их делят соответственно на пурпурные (пор. RhodospiriHales) и зеленые (пор. Chlorobiales). Все они осуществляют на свету бескислородный фотосинтез, используя восстановленные соединения серы в качестве доноров электрона в анаэробных условиях.
Пурпурные серобактерии — грамотрицательные одноклеточные прокариоты разной формы и размеров, подвижные и неподвижные. В клетках существует хорошо развитая система мембран — тилакоидов (внутрицитоплазматические разрастания мембраны), у некоторых есть газовые вакуоли. Окисляя H2S внутриклеточно, они временно откладывают в клетках молекулярную серу в виде капель, ограниченных белковой мембраной, а при дефиците сероводорода окисляют серу далее до серной кислоты. Представители: Thiospirillum и Chromatium — крупные подвижные бактерии; Thiodictyon, Thiocapsa— неподвижные, без жгутиков.
Зеленые серобактерии тоже одноклеточные, разной морфологии — от простых палочек до звездчатых клеток с простеками (нитевидные выросты клеток). Некоторые образуют цепочки или сетчатые структуры. Пигменты локализованы в хлоросомах. Зеленые серобактерии — более строгие анаэробы, чем пурпурные. Серу в клетках не накапливают, а выделяют ее наружу. Для большинства зеленых серобактерий установлена способность к азотфиксации. Помимо одноклеточных зеленых серобактерий — Chlorobium, Prosthecochloris и других — известны представители зеленых скользящих бактерий с нитчатым строением (Chloronema), которые тоже способны к окислению H2S (см. рис. 85). Встречаются в почвах рисовых полей и в болотах. Для их развития нужен свет и анаэробные условия.
Тионовые бактерии — хорошо изученная группа бактерий, так как они используются в гидрометаллургии для получения ценных металлов из бедных руд — хемолитоавтотрофы, использующие энергию окисления серы кислородом для процессов хемосинтеза. Эту группу составляют представители нескольких родов грамотрицательных эубактерий (Thiobacillus, Thiosphaera, Thiomicrospira) и один род термоацидофильных архебактерий (Sulfolobus). Полное ферментативное окисление молекулярной серы тионовыми бактериями приводит к образованию серной кислоты: S° -&g