Цель лекции: роль марганца, алюминия и других важных элементов в биосфере, превращения этих элементов в почве и микроорганизмы, участвующие в окислительно-восстановительных процессах марганца, алюминия, молибдена, кобальта, меди, бор, мышьяк, цинка
Ключевые слова: значениемарганца, алюминия, молибдена, кобальта, меди, бор, мышьяк, цинка, питание растений, недостаток в растениях элементов, микроорганизмы, бактерии,
Вопросы:
1. Значение марганца, алюминия и других элементов в биосфере
2. Превращение марганца
3. Превращение алюминия
4. Превращение других элементов (молибдена, кобальта, меди, бор, мышьяк, цинка)
1 Значение марганца, алюминия и других элементов в биосфере Марганец относится к группе необходимых для жизни микроэлементов. Его содержание в литосфере 0,1%, но в почве относительное накопление марганца выражено сильнее, чем железа, что связано с его концентрированием растениями. В изверженных породах марганец находится в рассеянном состоянии в форме Мn2+, на земной поверхности он легко окисляется. Марганец, как и железо, разновалентный элемент. Встречаются соединения с 2, 3, 4, 6 и 7, редко с 1 и 5 валентностями. Различные формы марганца обладают разными свойствами и подвижностью. В 3- и 4-валентном состоянии марганец входит в состав железомарганцевых конкреций в почве. В биосфере марганец энергично мигрирует в восстановительных и малоподвижен в окислительных условиях. Наиболее подвижен он в кислых почвах тундры и лесных ландшафтов, где содержание его местами превышает необходимые для растений дозы и вызывает токсический эффект. В сухих степях и пустынях в условиях нейтральной или слабощелочной среды соли марганца чрезвычайно устойчивы и недоступны растениям.
В состав растений и животных марганец входит в очень малых количествах. К аккумуляции марганца способны ржавчинные грибы, некоторые диатомовые водоросли и бактерии, из животных — рыжие лесные муравьи. В живых организмах марганец выполняет функцию активатора некоторых ферментов, участвующих в дыхательном цикле, фотосинтезе и биосинтезе нуклеиновых кислот. При его недостатке у растений наблюдается угнетение роста, появление признаков некроза и хлороза.
Особенно тесно связана реакция среды с подвижными формами в почве алюминия и марганца. Чем кислее почва, тем больше в ней подвижных алюминия и марганца, которые отрицательно влияют на рост и развитие растений. Вред от алюминия в подвижной его форме по своим размерам часто превосходит вред, вызываемый непосредственно актуальной кислотностью, ионами водорода. Алюминий нарушает у растений процессы закладывания генеративных органов, оплодотворения и налива зерна, а также обмена веществ. В растениях, выращенных на почвах с большим содержанием подвижного алюминия, часто уменьшается содержание сахаров, тормозится превращение моносахаров в сахарозу и более сложные органические соединения, резко увеличивается содержание небелкового азота и самих белков. Подвижный алюминий задерживает образование фосфотидов, нуклеопротеидов и хлорофилла. Он связывает в почве фосфор, отрицательно влияет на жизнедеятельность полезных для растений микроорганизмов.
Растения обладают разной чувствительностью к содержанию в почве подвижного алюминия. Одни без вреда переносят относительно высокие концентрации этого элемента, а другие при тех же концентрациях погибают. Высокой стойкостью к подвижному алюминию обладают овес, тимофеевка, средней — кукуруза, люпин, просо, чумиза, повышенной чувствительностью характеризуются яровая пшеница, ячмень, горох, лен, турнепс и наиболее чувствительны — свекла сахарная и кормовая, клевер, люцерна, озимая пшеница.
Количество подвижного алюминия в почве находится в большой зависимости от степени ее окультуренности и от состава применяемых удобрений. Систематическое известкование почв, применение органических удобрений приводят к уменьшению и даже полному исчезновению подвижного алюминия в почвах. Высокий уровень обеспеченности растений фосфором и кальцием в первые 10—15 дней, когда растения наиболее чувствительны к алюминию, существенно ослабляет его отрицательное действие. В этом, в частности, заключается одна из причин высокого эффекта рядкового внесения суперфосфата и извести на кислых почвах.
Алюминий в растениях может содержаться в значительных количествах: на его долю в золе некоторых растений приходится до 70 %. Алюминий нарушает обмен веществ в растениях, затрудняет синтез Сахаров, белков, фосфатидов, нуклеопротеидов и других веществ, что отрицательно сказывается на урожайности растений. Наиболее чувствительными культурами к наличию подвижного алюминия в почве (1 - 2 мг на 100 г почвы) являются сахарная свекла, люцерна, клевер красный, озимая и яровая вики, озимая пшеница, ячмень, горчица, капуста, морковь.
Помимо упомянутых макро - и микроэлементов в растениях содержится ряд элементов в ничтожно малых количествах (от 108 до 10 - 12 %), называемых ультрамикроэлементами. К ним относятся цезий, кадмий, селен, серебро, рубидий и др. Роль этих элементов в растениях не изучена.
2 Превращение марганца Марганец накапливается в почве в окисленной форме. Гипотеза биогенного происхождения отложений окисных соединений марганца принадлежит В.И. Вернадскому. Биологическое окисление оптимально протекает в пределах pH 6,5-7,3. Энергии окисления марганца недостаточно для образования АТФ, поэтому бактерий, аналогичных железоокисляющим хемолитоавтотрофам, в природе нет, хотя известны микроорганизмы, способные к аккумуляции и отложению марганца.
Как и в случае превращений железа, в основе окисления и накопления марганца микроорганизмами можно проследить разные механизмы. Мобилизация марганца из устойчивых природных соединений — минералов почвообразующих пород (например, пиролюзита Мп02) — происходит за счет разрушения последних с включением механизмов, описанных для процессов превращения калия. При микробиологическом окислении двухвалентный растворимый марганец переходит в нерастворимую четырехвалентную форму. Марганец окисляют многие неспецифические микроорганизмы из разных таксономических групп бактерий и грибов, при этом процесс осуществляется часто одновременно двумя организмами. Наиболее известна ассоциация грибов с микоплазмой Metallogenium. Грибными компонентами выступают представители многих родов — Coniothyrium, Fusarium, Altemaria, Cephalosporium.
Характер взаимоотношений симбионтов в этой ассоциации не до конца выяснен, но в основе, вероятно, лежит способность Metallogenium разлагать Н202, защищая тем самым грибы, не образующие каталазы, от токсического действия перекиси. Осаждение марганца в этом случае — побочный процесс, сопряженный с удалением Н202. Metallogenium получает от грибного компонента необходимые для гетеротрофного метаболизма органические вещества. На агаризованных питательных средах, содержащих марганец, колонии ассоциированных микроорганизмов развиваются в виде хорошо заметных по отложениям окиси марганца черных зерен. В природе такие ассоциации широко представлены в почвах подзолистого ряда, для которых они служат индикаторами на подзолообразование. Бинарные культуры Metallogenium образует не только с мицелиальными грибами, но и с дрожжами, а также с прокариотами.
Среди гетеротрофных марганецокисляющих микроорганизмов известны те же виды, которые участвуют в окислении железа. Это почвенные коринеподобные бактерии Arthrobacter и Rhodococcus, олиготрофные Hyphomicrobium и Pedomicrobium, стебельковые бактерии рода Seliberia.
Многие почвенные грибы, бактерии и актиномицеты способны не только окислять неорганические соли марганца, но также могут освобождать и окислять марганец из металлоорганических соединений. Бактерии проводят окисление марганца, как правило, в условиях нейтральной среды, грибы окисляют марганец в зоне кислых значений pH.
Окисление железа и марганца активно протекает в ризосфере риса. В результате активности ризосферных микроорганизмов на корнях риса образуются ризоконкреции, содержащие Fe и Мп.
Итак, марганецокисляющие микроорганизмы распространены в почвах в широком диапазоне условий, проявляя активную деятельность в качестве специфических катализаторов окисления марганца и его концентраторов.
В восстановительных условиях (например, в почвах рисовых полей) облигатные и факультативно анаэробные бактерии родов Bacillus, Clostridium, Desulfotomaculum участвуют в мобилизации марганца путем его восстановления и в иммобилизации в результате поглощения из растворимых форм. Восстановление марганца — неспецифическая реакция, которую могут проводить многие бактерии-полиредуктанты.
3 Превращения алюминия Алюминий — один из наиболее распространенных элементов. По содержанию в земной коре он занимает третье место после кислорода и кремния, а из металлов — первое. В почве алюминий находится в составе первичных и вторичных минералов, гидроокиси и солей, в форме различных алюмоорганических соединений. В зависимости от физико-химических условий среды и формы соединений алюминий по-разному мигрирует и аккумулируется в почвах.
Соединения алюминия малоподвижны в слабощелочной и нейтральной средах и приобретают подвижность в кислых. Например, в почвах гумидных областей с низкими значениями pH алюминий образует растворимые органоминеральные комплексы с фульвокислотами и активно мигрирует по почвенному профилю. Интервал pH, в котором фульваты алюминия подвижны, меньше, чем у фульватов Fe. Повышение pH и разложение алюмоорганических комплексов приводят к осаждению алюминия. Биогенные процессы преобразования его исследованы слабо. Участие микроорганизмов прямое или косвенное в цикле превращения алюминия в почвах можно рассмотреть на следующих примерах: 1) мобилизации алюминия из первичных и вторичных минералов, 2) разложения (минерализации) алюмоорганических соединений, 3)аккумуляции гидроокиси алюминия.
Минералы почвообразующей породы — это первоисточник всех содержащихся в почве форм алюминия. Освобождение алюминия из первичных и вторичных минералов может происходить в результате выноса остальных, более подвижных в соответствующих условиях химических элементов.
При выветривании алюмосиликатов полуторные окислы алюминия (глинозем) и железа в зависимости от физико-химического режима почв или выносятся из определенных почвенных горизонтов, или, наоборот, закрепляются в них. В первом случае это приводит к подзолообразованию, которое сопровождается накоплением остаточного кремнезема, а во втором — к латерито- образованию. Возможность биогенного образования минералов окиси алюминия и в связи с этим — залежей алюминиевых руд (бокситов) не исключена, хотя этот вопрос решается неоднозначно. Т. В. Аристовская выдвинула гипотезу, что возникновение залежей бокситов во многих случаях может быть не непосредственным результатом разрушения алюмосиликатов, а следствием минерализации соответствующих металлоорганических комплексов.
Один из важных механизмов мобилизации алюминия из кристаллических решеток алюмосиликатов — хелатизация. В этом процессе участвуют, с одной стороны, продукты микробного синтеза и микробного разложения растительных остатков, с другой — специфические органические вещества почвы — гумусовые кислоты. Образующиеся алюмоорганические соединения широко распространены в почвах. Например, комплексы алюминия с фульвокислотами в значительных количествах закрепляются и накапливаются в иллювиальных горизонтах подзолистых почв.
Алюмоорганические соединения не только образуются в самой почве, но и поступают в нее с растительными остатками в виде комплексов алюминия с органическими кислотами, аминокислотами и белками. Далее в зависимости от экологических условий алюмоорганические соединения в почве претерпевают различные превращения: выносятся за пределы почвенного профиля, минерализуются, закрепляются в составе гумусовых веществ. Первые два процесса характерны для почв влажных субтропиков, третий — для почв подзолистой зоны.
Процессы минерализации алюмоорганических комплексных соединений связаны с жизнедеятельностью почвенных микроорганизмов. Экспериментальных работ в этой области пока очень мало. В разложении этих веществ участвуют грибы в комплексе с организмами группы микоплазм — Metallogenium. В присутствии органоминеральных соединений алюминия гифы грибов Penicilium sp. в симбиозе с Metallogenium покрываются отложениями гидроокисей алюминия. Микроорганизмы типа Metallogenium могут участвовать в накоплении алюминия, а также железа и марганца (см. выше) в почвенном профиле.
5 Превращение другие элементы ( молибдена, кобальта, меди, бор, мышьяк, цинка, никель) Почвенные микроорганизмы участвуют в превращениях всех без исключения элементов, которые имеются в земной коре. Практически нет ни одного элемента, который тем или иным путем не подвергался бы воздействию микроорганизмов или их метаболитов. Одни элементы вовлекаются в биологический круговорот, входя в состав органических веществ в процессе ассимиляции, другие окисляются, восстанавливаются или аккумулируются, третьи осаждаются или растворяются, извлекаются из минералов, подвергаются миграции, включаются в комплексы и т.д.
Очень важны превращения, связанные с микроэлементами, которые необходимы всем организмам в очень малых дозах, но при этом роль их необычайно велика, так как они входят в состав ферментов и определяют их активность. Такова, например, роль молибдена, входящего в активный центр ферментов азотного цикла — нитрогеназы и нитратредуктазы, кобальта, ответственного за функции витамина В12, меди, входящей в простетическую группу ферментов — оксидаз.
Известен ряд микроэлементов, которые не входят непосредственно в молекулы ферментов, но косвенно влияют на их активность и направление обмена веществ. К таковым относятся бор, мышьяк и др.
Мышьяк входит в состав всех живых клеток в микроколичествах. Его превращения в почве связаны с деятельностью микроорганизмов. Содержание мышьяка в почвах обычно невысокое — от 0,001 до 0,0001%. Оно наиболее значительно в черноземах и органогенных горизонтах почв лесной зоны. Количество мышьяка очень сильно увеличивается за счет техногенных процессов. В его превращениях, аккумуляции и миграции участвуют грибы и бактерии. Окисление арсенита в арсенат — процесс биологический, о чем свидетельствует угнетение его азидом натрия, подавляющим дыхание. Среди бактерий, обусловливающих процесс окисления арсенитов, были описаны неспоровые грамотрицательные палочки. Некоторые микроорганизмы ответственны за удаление мышьяка из почвы путем образования его газообразных соединений. Часть мышьяка фиксируется (иммобилизуется) клетками микроорганизмов за счет включения в обменные внутриклеточные реакции.
В основном бор в почвах входит в состав органических соединений, из которых он освобождается микроорганизмами. Роль бора проявляется в образовании и функционировании клубеньков бобовых растений, так как он участвует в развитии сосудистой системы растений. Бор влияет на азотфиксацию клубеньковых бактерий, азотобактера и цианобактерий, а также стимулирует развитие многих бактерий и грибов. При малом содержании бора в почве или в условиях, затрудняющих его выведение из органических соединений, микроорганизмы выступают как конкуренты высших растений в отношении этого элемента, прочно удерживая его в своих клетках.
Для многих элементов известны только отдельные звенья превращений, связанных с деятельностью почвенных микроорганизмов.
Микроорганизмы способны к аккумуляции в своих клетках элементов, содержащихся в почвах в микроколичествах.
Методами радиоавтографии показано, что микробные клетки накапливают естественные радиоактивные элементы, такие как уран, торий, радий. На пленке после периода экспонирования микробных колоний, выращенных в присутствии указанных элементов, подсчитывают число треков— следов радиоактивного распада элементов, аккумулированных микроорганизмами.
Живые клетки микроорганизмов разных таксономических групп оказались способными аккумулировать коллоидное золото. В этом процессе главную роль играют аминокислоты — продукты микробного метаболизма.
Тионовая бактерия Thiobacillus ferrooxidans вызывает как прямое окисление сульфидов, так и косвенно влияет на миграцию меди, цинка, никеля и др.
Известна роль микроорганизмов в процессах фракционирования стабильных изотопов некоторых элементов: углерода, азота, серы, селена, лития. Примером может служить деятельность бактерий, участвующих в превращениях серы. Первичная сера Земли представлена сульфидами. Изотопный состав серы в горных породах подвержен значительным колебаниям. За стандарт изотопного состава серы принимается сера метеоритов. Отклонения в соотношении легких (32S) и тяжелых (33S, 34S, 36S) изотопов серы — результат последующего разделения атомов разной массы. Появление кислорода в газовой оболочке Земли привело к образованию сульфатов. При их восстановлении биологическим путем за счет активности сульфатредуцирующих бактерий происходит фракционирование изотопов серы: в H2S они переводят атомы легкой серы (32S), а в остаточном сульфате накапливается избыток тяжелого изотопа 34S. Таким образом, изотопный состав серы океанических сульфатов утяжелен на несколько процентов по сравнению с серой метеоритов, а сульфидные месторождения обогащены легким изотопом серы. По возрасту биогенных отложений серных руд определяют время появления кислорода на Земле, так как оно примерно совпадает с началом сульфатредукции.
В естественных биогеохимических провинциях, где почва обогащена молибденом, медью, ванадием, свинцом, бором, марганцем, почвенные микроорганизмы проявляют повышенную устойчивость и способность к аккумуляции этих элементов по сравнению с обедненными провинциями, что связано с адаптационными явлениями в отношении этих геохимических факторов среды.
Превращения веществ путем извлечения элементов из минералов и включения в новообразованные минералы рассматриваются ниже.
Контрольные вопросы:
1. Значение марганца и алюминия в биосфере?
2. Какое значение имеет микроэлементы в питании растений?
3. Какие микроорганизмы разлагают эти элементы и их соединения?
4. Микроудобрения и их значение?
5. Превращение в почве марганца, алюминия, бора, меди, кобальта?
Литература:
1. Звягинцев Д.Г., Бабьева И.П., Зенова Г.М. Биология почв: Учебник. - 3-е изд., испр. и доп. - М.: Изд-во МГУ, 2005.
2. Звягинцев Д.Г. Микроорганизмы и почва. М.: МГУ, 1987.
3. Бабьева И.П., Зенова Г.М. Биология почв. М.: МГУ, 1989. с.336.
4. Мирчинк Т.Г.Почвенная микология.-М.: Изд. МГУ,1986.
5. Емцов В. Т.Микробы, почва, урожай. – М.: Изд. Колос,1980.
6. Почвенная микробиология./ Под ред. Д.И. Никитина /- М.: Изд. Колос,1979
Лекция 16